
TotalView

Users Guide

August 2001

Version 5.0

Copyright © 1999–2001 by Etnus LLC. All rights reserved.
Copyright © 1998–1999 by Etnus Inc. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus
LLC (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus
assumes no responsibility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC. TimeScan and Gist are trademarks of Etnus LLC.

All other brand names are the trademarks of their respective holders.
ii

Contents
About This Book
Supported Platforms ..xv
Reporting Problems ..xvi
Conventions ..xvi

1 TotalView Features
TotalView Advantages ... 1
TotalView Windows ... 3
Understanding Multiprocess Programs .. 5
Understanding Multithreaded Programs ... 6
Controlling Processes and Threads .. 7
Using Action Points .. 8
Examining and Manipulating Data .. 9
Distributed Debugging .. 10
Visualization .. 11
Context-Sensitive Help and Documentation 13

2 TotalView Basics
Compiling Programs .. 15
Starting TotalView ... 16

Initializing the Debugger ... 17
Using the Mouse Buttons ... 18
Using the Root Window .. 19
The Process Window ... 22

Starting a Process ... 22
Diving into Objects ... 26
Editing Text ... 28
Searching for Text ... 28
Searching for Functions and Variables ... 29
Version 5.0 TotalView Users Guide iii

i

Contents

i

Saving the Contents of Windows ..30
Exiting from TotalView ..31

3 Setting Up a Debugging Session
Compiling Programs ..33
Starting TotalView ...34
Loading Executables ...36

More on Loading Remote Executables ...37
Reloading a Recompiled Executable ...38

Attaching to Processes ...39
Attaching Using the Unattached Page ..39
Attaching Using File > New Program ..40

Detaching from Processes ..41
Examining a Core File ..42
Processes and Thread State ..43

Attached Process States ...44
Unattached Process States ...45

Handling Signals ..45
Setting Search Paths ...48
Setting Command Arguments ...50
Setting Input and Output Files ..51
Setting Preferences ...52

Setting Preferences, Options, and X Resources54
Setting Environment Variables ..58
Monitoring TotalView Sessions ...59

4 Setting Up Remote Debugging Sessions
Starting the TotalView Debugger Server ..61

Single Process Server Launch Options ..62
Bulk Launch Window Options ...63
Starting the Debugger Server Manually ...65
Single Process Server Launch Command66
Bulk Server Launch on an SGI MIPs Machine68
Bulk Server Launch on an IBM RS/6000 AIX Machine69
Disabling Autolaunch ..70
Changing the Remote Shell Command ...70
Changing the Arguments ...71
Autolaunch Sequence ...71

Debugging Over a Serial Line ..72
Start the TotalView Debugger Server ...73
v Cli Guidev TotalView Users Guide Version 5.0

Contents
Starting TotalView on a Serial Line ... 74
New Program Window ... 74

5 Setting Up Parallel Debugging Sessions
Debugging MPI Applications Overview... 77
Debugging MPICH Applications .. 78

Starting TotalView on an MPICH Job ... 79
Attaching to an MPICH Job ... 80
MPICH P4 procgroup Files .. 81

Debugging Compaq MPI Applications .. 82
Starting TotalView on a Compaq MPI Job 82
Attaching to a Compaq MPI Job ... 83

Debugging HP MPI Applications ... 83
Starting TotalView on an HP MPI Job .. 83
Attaching to an HP MPI Job .. 84

Debugging IBM MPI (PE) Applications .. 84
Preparing to Debug a PE Application.. 84

Switch-Based Communication ... 85
Remote Login ... 85
Timeout .. 85

Starting TotalView on a PE Job .. 86
Setting Breakpoints ... 86
Starting Parallel Tasks ... 86
Attaching to a PE Job .. 87

Attaching from a Node Running poe 87
Attaching from a Node Not Running poe 88

Debugging QSW RMS Applications ... 88
Starting TotalView on an RMS Job .. 88
Attaching to an RMS Job... 89

Debugging SGI MPI Applications .. 89
Starting TotalView on a SGI MPI Job ... 89
Attaching to an SGI MPI Job ... 90

Displaying the Message Queue Graph .. 90
Displaying the Message Queue ... 92

Message Queue Display Overview .. 92
Message Operations ... 93

MPI Process Diving ... 93
MPI Buffer Diving .. 94
Pending Receive Operations ... 94
Unexpected Messages .. 94
Version 5.0 TotalView Users Guide v

v

Contents

v

Pending Send Operations ...95
MPI Debugging Troubleshooting ...95

Debugging OpenMP Applications ...96
Debugging an OpenMP Program ...97
OpenMP Private and Shared Variables ..98
OpenMP THREADPRIVATE Common Blocks101
OpenMP Stack Parent Token Line ...102

Debugging PVM and DPVM Applications ..103
Supporting Multiple Sessions ... 103
Setting Up ORNL PVM Debugging ...104
Starting an ORNL PVM Session ...104
Starting a DPVM Session ...106
Automatically Acquiring PVM/DPVM Processes107
Attaching to PVM/DPVM Tasks ..108

Reserved Message Tags .. 109
Debugging Dynamic Libraries ... 110
Cleanup of Processes.. 110

Shared Memory Code ...110
Debugging Portland Group, Inc., HPF Applications111

Starting TotalView with HPF ..113
Dynamically Loaded Library ..114

Setting Up PGI HPF Compiler Defaults ..115
Setting Up MPICH ...115
Setting TotalView Defaults for HPF ...115
Compiling HPF for Debugging ...116
Starting HPF Programs ..116

PGI HPF smp and rpm Libraries .. 116
Starting HPF Programs with MPICH 117
Workstation Clusters Using MPICH....................................... 117
IBM Parallel Environment.. 117

Parallel Debugging Tips ...117
Attaching to Processes ... 117
General Parallel Debugging Tips ..120
MPICH Debugging Tips ..122
IBM PE Debugging Tips ...122

6 Debugging Programs
Displaying Your Program’s Call Tree ..125
Finding the Source Code for Functions ..127

Resolving Ambiguous Names ..128
i Cli Guidei TotalView Users Guide Version 5.0

Contents
Finding the Source Code for Files ... 129
Examining Source and Assembler Code ... 129
Resetting the Current Stack Frame ... 132
Editing Source Text ... 132
Using the Toolbar to Select a Target .. 132
Stopping Processes and Threads ... 133
Updating Process Information .. 134
Holding and Releasing Processes and Threads 134
Examining Groups ... 135

Displaying Groups ... 137
Placing Processes into Groups ... 138

Starting Processes and Threads ... 138
Creating a Process Without Starting It .. 139
Creating a Process by Single-Stepping 139

Stepping .. 140
Process-Width Stepping .. 141
Group-Width Stepping .. 141
Thread-Width Stepping ... 142
Selecting Source Lines .. 142

Using Single-Step Commands .. 143
Stepping into Function Calls .. 144
Stepping Over Function Calls ... 144

Executing to a Selected Line .. 144
Executing to the Completion of a Function 146

Displaying Thread and Process Locations 147
Continuing with a Specific Signal ... 148
Setting the Program Counter .. 149
Deleting Programs ... 150
Restarting Programs .. 150
Checkpointing Programs and Processes .. 151
Interpreting Status and Control Registers 151

7 Examining and Changing Data
Displaying Variable Windows .. 153

Displaying Local Variables and Registers.................................... 153
Displaying a Global Variable ... 155
Displaying All Global Variables ... 155
Displaying Long Variable Names ... 155
Displaying Areas of Memory ... 156
Displaying Machine Instructions ... 157
Version 5.0 TotalView Users Guide vii

vi

Contents

vi
Closing Variable Windows ..158
Diving in Variable Windows ...159
Changing the Values of Variables ..161
Changing the Data Type of Variables ..161

How TotalView Displays C Data Types ..162
Pointers to Arrays ..163
Arrays ..163
Typedefs ..164
Structures ..164
Unions ...165
Built-In Types ..166

Character arrays (<string> Data Type)168
Areas of memory (<void> Data Type)168
Instructions (<code> Data Type) ..169

Type Casting Examples ...169
Displaying the argv Array .. 169
Displaying Declared Arrays ... 169
Displaying Allocated Arrays .. 170

Working with Opaque Data ...171
Changing the Address of Variables ...171
Changing Types to Display Machine Instructions171
Displaying C++ Types ..172

Classes .. 172
Changing Class Types in C++ ..173

Displaying Fortran Types ...174
Displaying Fortran Common Blocks.. 174
Displaying Fortran Module Data ...175
Debugging Fortran 90 Modules ...177
Fortran 90 User-Defined Type ...178
Fortran 90 Deferred Shape Array Type ..178
Fortran 90 Pointer Type ...179
Displaying Fortran PARAMETERS ..180

Displaying Thread Objects ..181

8 Examining Arrays
Examining and Analyzing Arrays ...183

Displaying Array Slices ..183
Slice Definitions ..184
Using Slices in the Variable Command186

Array Data Filtering ..188
ii Cli Guideii TotalView Users Guide Version 5.0

Contents
Filtering by Comparison ... 188
Filtering for IEEE Values .. 189
Filtering by Range of Values .. 190
Array Filter Expressions .. 190
Filter Comparisons ... 192
Filtering Array Data ... 193

Sorting Array Data ... 193
Array Statistics .. 194

Displaying a Variable in All Processes or Threads 196
Diving in a Laminated Pane .. 198
Editing a Laminated Variable .. 198

Visualizing Array Data ... 199
Visualizing a Laminated Variable Window 200

9 Setting Action Points
Action Points Overview ... 201
Setting Breakpoints and Barriers .. 203

Setting Source-Level Breakpoints ... 203
Selecting Ambiguous Source Lines 204

Toggling Breakpoints at Locations ... 205
Ambiguous Locations ... 205

Displaying and Controlling Action Points 205
Disabling... 207
Deleting .. 207
Enabling.. 207
Suppressing .. 207

Setting Machine-Level Breakpoints .. 208
Breakpoints for Multiple Processes .. 209
Breakpoint When Using fork()/execve() 211

Processes That Call fork() ... 211
Processes That Call execve() .. 211
Example: Multiprocess Breakpoint 212

Barrier Breakpoints ... 212
Barrier Breakpoint States .. 213
Setting a Barrier Breakpoint ... 213
Releasing Processes from Barrier Points 215
Deleting a Barrier Point ... 215
Changes When Setting and Clearing a Barrier Point 215

Defining Evaluation Points ... 216
Setting Evaluation Points .. 217
Version 5.0 TotalView Users Guide ix

Contents
Creating Conditional Breakpoint Examples218
Patching Programs ...218

Conditionally Patching Out Code ...219
Patching in a Function Call ... 219
Correcting Code.. 219

Interpreted vs. Compiled Expressions ..220
Interpreted Expressions ..220
Compiled Expressions ..221

Allocating Patch Space for Compiled Expressions221
Dynamic Patch Space Allocation ..222
Static Patch Space Allocation ...223

Using Watchpoints ..224
Architectures ...225
Creating Watchpoints ..226

Displaying Watchpoints ..227
Watching Memory ..228
Triggering Watchpoints ..228

Using Multiple Watchpoints ..229
Data Copies ..229

Conditional Watchpoints ...230
Saving Action Points to a File ...232
Evaluating Expressions ...232
Writing Code Fragments ..234

Intrinsic Variables .. 234
Built-In Statements ...236
C Constructs Supported ..238

Data Types and Declarations ..238
Statements ..239

Fortran Constructs Supported ..239
Data Types and Declarations ..240
Statements ..240

Writing Assembler Code ..241

10 Visualizing Data
How the Visualizer Works ..247
Configuring TotalView to Launch the Visualizer249
Data Types That TotalView Can Visualize ..250
Visualizing Data from the Variable Window251
Visualizing Data in Expressions ...252

Visualizer Animation ..254
x Cli Guidex TotalView Users Guide Version 5.0

Contents
Using the TotalView Visualizer .. 254
Directory Window .. 254
Data Windows ... 255

Viewing of Data ... 257
Graph Window ... 258

Displaying Graphs ... 258
Manipulating Graphs .. 260

Surface Window ... 260
Displaying Surface Data .. 262
Manipulating Surface Data ... 263

Launching the Visualizer from the Command Line 266

11 Troubleshooting
Overview ... 269
The Problems .. 270

12 X Resources
TotalView X Resources .. 275
Visualizer X Resources .. 284

13 TotalView Command Syntax
Syntax ... 289
Options ... 290

14 TotalView Debugger Server (tvdsvr) Command Syntax
The tvdsvr Command and Its Options.. 303
Replacement Characters ... 307

A Compilers and Platforms
Compiling with Debugging Symbols ... 311

Compaq Tru64 UNIX ... 312
HP-UX ... 312
IBM AIX on RS/6000 Systems .. 313
SGI IRIX-MIPS Systems ... 314
SunOS 5 on SPARC ... 315

Using Exception Data on Compaq Tru64 UNIX 316
Linking with the dbfork Library ... 317

Compaq Tru64 UNIX ... 317
HP-UX ... 317
IBM AIX on RS/6000 Systems .. 318

Linking C++ Programs with dbfork 319
Version 5.0 TotalView Users Guide xi

x

Contents

x

SGI IRIX6-MIPS ..319
SunOS 5 SPARC ...320

B Operating Systems
Supported Operating Systems ..321
Mounting the /proc File System ..322

Compaq Tru64 UNIX and SunOS 5 ...323
SGI IRIX ..323

Swap Space ...323
Compaq Tru64 UNIX ...324
HP HP-UX ..325

Maximum Data Size ..325
IBM AIX ..326
Linux ..327
SGI IRIX ..327
SunOS 5 ...328

Shared Libraries ..329
Changing Linkage Table Entries and LD_BIND_NOW330
Using Shared Libraries on HP-UX ..331

Debugging Dynamically Loaded Libraries331
Known Limitations ..334

Remapping Keys ..334
Expression System ..334

Compaq Alpha Tru64 UNIX ...335
IBM AIX ..335
SGI IRIX ..335

C Architectures
Compaq Alpha ..337

Alpha General Registers .. 338
Alpha Floating-Point Registers ..338
Alpha FPCR Register ..339

HP PA-RISC ...340
PA-RISC General Registers ..340
PA-RISC Process Status Word ...341
PA-RISC Floating-Point Registers ..342
PA-RISC Floating-Point Format ...343

IBM Power ...344
Power General Registers ..344
Power MSR Register ...345
ii Cli Guideii TotalView Users Guide Version 5.0

Contents
Power Floating-Point Registers ... 346
Power FPSCR Register ... 346

Using the Power FPSCR Register ... 348
Intel-x86 .. 348

Intel-x86 General Registers ... 349
Intel-x86 Floating-Point Registers ... 350
Intel-x86 FPCR Register ... 350

Using the Intel-x86 FPCR Register .. 351
Intel-x86 FPSR Register ... 352

SGI MIPS ... 352
MIPS General Registers ... 353
MIPS SR Register ... 354
MIPS Floating-Point Registers ... 355
MIPS FCSR Register ... 356

Using the MIPS FCSR Register .. 357
MIPS Delay Slot Instructions .. 357

Sun SPARC .. 358
SPARC General Registers .. 359
SPARC PSR Register .. 359
SPARC Floating-Point Registers .. 360
SPARC FPSR Register .. 361

Using the SPARC FPSR Register .. 362

Glossary... 363

Citations ... 376

Index... 377
Version 5.0 TotalView Users Guide xiii

xi

Contents

xi
v Cli Guidev TotalView Users Guide Version 5.0

About This Book
This guide describes how to use TotalView®, a source-level and machine-level
debugger with an easy-to-use interface and support for debugging multiprocess
programs. The guide assumes that you are familiar with programming lan-
guages, the UNIX operating systems, the X Window System, and the processor
architecture of the platform on which you are running TotalView.

This guide covers using TotalView on any platform. Most of the examples and
illustrations in this guide show TotalView running on a workstation. To learn
about the specifics of running TotalView on your platform, refer to Appendix A,
“Compilers and Platforms,” on page 311, Appendix B, “Operating Systems,” on
page 321, and Appendix C, “Architectures,” on page 337.

Supported Platforms

TotalView runs on a variety of platforms and can be used to debug pro-
grams running locally or on remote systems. It can debug parallel proces-
sors, supercomputers, and digital signal processor boards.

If TotalView is not yet available for your system configuration, please con-
tact Etnus® about porting TotalView to suit your needs:

Etnus Inc.
24 Prime Parkway
Natick, MA 01760
Internet E-mail: info@etnus.com
1-800-856-3766 in the United States
(+1) 508-652-7700 worldwide
Version 5.0 TotalView Users Guide xv

x

About This Book

Reporting Problems
Reporting Problems

Please contact us if you have problems installing TotalView, questions that
are not answered in the product documentation or on our Web site, or sug-
gestions for new features or improvements.

Internet E-Mail addresses: support@etnus.com
United States Phone Number: 1-800-856-3766
Worldwide Phone Number: (+1) 508-652-7700

If you are reporting a problem, please include the following information:

g The version of TotalView

g The platform on which you are running TotalView

g An example that illustrates the problem

g A record of the sequence of events that led to the problem

See the TOTALVIEW RELEASE NOTES for complete instructions on how to
report problems.

Conventions

The following table describes the conventions used in this book:

Table I: Book Conventions

Convention Meaning
[] Brackets are used when describing parts of a command

that are optional.
arguments Within a command description, text in italic represent

information you type. Elsewhere, italic is used for em-
phasis. You will not have any problems distinguishing
between the uses.

Dark text Within a command description, dark text represent key
words or options that you must type exactly as dis-
played. Elsewhere, it represents words that are used in a
programmatic way rather than their normal way.
vi TotalView Users Guide Version 5.0

Version 5.0
Chapter 1
TotalView Features
The Etnus TotalView® debugger is a sophisticated tool that allows you to
debug, analyze, and tune the performance of complex multiprocessor or multi-
threaded programs.

This chapter highlights:

g TotalView Advantages
g TotalView Windows

g Understanding Multiprocess Programs
g Understanding Multithreaded Programs
g Controlling Processes and Threads
g Using Action Points
g Examining and Manipulating Data
g Distributed Debugging
g Visualization
g Context-Sensitive Help and Documentation

If you want to jump in and get started quickly, you should go to our Website at
www.etnus.com and go to TotalView’s “Getting Started” area.

TotalView Advantages

TotalView provides many advantages over conventional UNIX debuggers
such as dbx, gdb, adb, and other sophisticated hardware-specific debug-
gers:

g TotalView runs on all major UNIX platforms so you can use the same de-
bugger regardless of where you are debugging today.
TotalView Users Guide 1

1
TotalView Features

TotalView Advantages
g TotalView’s interface lets you see a lot of useful information without en-
tering commands.

g You can debug multiprocess multithreaded programs. TotalView displays all
important information about a single process in its own window, showing
the source code, stack trace, and stack frame for one or more threads in
the process. By default, TotalView displays just the current process, but
you can display all process windows simultaneously if you wish.
TotalView even lets you perform debugging tasks across processes.

g TotalView’s distributed architecture lets you debug remote programs over
the network, as shown in the following figure.

TotalView can manage multiple remote programs and multiprocess mul-
tithreaded programs simultaneously, as shown in Figure 2.

g Parallel and distributed programs run in many processes, and your de-
bugger must know about them. When you start TotalView as part of an
MPI, IBM Parallel Environment (PE), OpenMP, pthread, HPF, or Parallel
Virtual Machine (PVM), application, TotalView automatically detects and
attaches to these processes. If a program calls fork() or execve(),
TotalView automatically attaches to the child process. This is called auto-
matic process acquisition.

g Because your program can execute using a variety of processes and
threads, TotalView has an extremely flexible system of handling your exe-
cutable so that you can control how and what is executing at any one
time.

FIGURE 1: Debugging a Remote Program with TotalView

Remote
Executable

Remote
Debugging

Network

TotalView

Native
Executable
2 TotalView Users Guide Version 5.0

TotalView Features

TotalView Windows
g Because TotalView lets you attach to running processes, you can debug
processes that were not started under TotalView’s control.

g If the code you are debugging was not compiled using the –g option or if
you do not have access to the program’s source file, TotalView lets you
debug its machine-level code.

g TotalView lets you temporarily add source code statements to the pro-
gram you are debugging. On some platforms, you can even add machine
code statements. This feature saves time when you are testing bug fixes.

g TotalView’s Command Line Interface (CLI) lets you enter commands di-
rectly in an xterm window when you find yourself unable to use the GUI.
(The CLI is described in the CLI GUIDE.)

TotalView Windows

The three most often used windows within TotalView are shown in Figure 3.

Root Window Gives you an overview of the state of your program.
You can also use it as a navigation tool.

This window has tabbed pages that contain informa-
tion about the processes and threads being de-
bugged, processes that TotalView could acquire for
debugging, groups that you can use to manipulate
these processes and threads, and a log that records
your entire session.

FIGURE 2: Debugging a Distributed Program with TotalView

Distributed Executables
Distributed
Debugging

Network

TotalView

Native
Executable
Version 5.0 TotalView Users Guide 3

1
TotalView Features

TotalView Windows
FIGURE 3: TotalView Windows

Root Window

Process Window

Variable Window

Process Window
4 TotalView Users Guide Version 5.0

TotalView Features

Understanding Multiprocess Programs
Process Window Displays information about a process and a thread
within that process. Panes within this window show
the stack trace, stack frame, and code for the selected
thread. This window is where you will spend the bulk
of all your debugging activities.

Variable Window
Lists the address, data type, and value of a local vari-
able, register, or global variable. It also shows the val-
ues stored in a block of memory.

Understanding Multiprocess Programs

TotalView has special features for debugging multiprocess programs.

g Process groups
TotalView treats multiprocess programs as groups of processes. When
debugging multiprocess programs, you can view information about all
process groups and can view information about a multiprocess program.
Using TotalView, you can start and stop individual groups.

g Separate windows for each process
TotalView can display each process in its own TotalView Process Window,
displaying information for that process. You can monitor the status,
thread list, breakpoint list, and source code for each process. You do not
have to display all the process windows in a multiprocess program; in-
stead, you can choose only those Process Windows that are important
to you.

Because display space is always limited on your monitor, TotalView tries
to reuse Process Windows unless you tell it not to. In this way, you are
not forced to have hundreds of windows when you are working with hun-
dreds of processes.

g Sharing of breakpoints among processes
You can control if a breakpoint is shared among child processes and if all
processes in the group stop when any process in the group reaches a
breakpoint. Like most behaviors in TotalView, you can set preferences or
use command-line options that configure how TotalView behaves.

g Barrier breakpoints
In addition to “normal” breakpoints, TotalView allows you to create pro-
cess and thread barrier breakpoints. A barrier breakpoint differs from a
Version 5.0 TotalView Users Guide 5

1
TotalView Features

Understanding Multithreaded Programs
normal breakpoint in that it holds every thread or process in a group
that reaches the barrier until all reach it. When the last in the group
reaches the barrier, TotalView releases all of these held processes. This
lets you synchronize a group of processes or threads to the same loca-
tion.

g Process and thread group-level single-stepping
TotalView allows you to single-step groups of processes and groups of
threads using one command.

g Multiple symbol tables
If you are debugging more than one executable at the same time,
TotalView automatically handles the symbol table for each.

Understanding Multithreaded Programs

While the way in which operating systems implement threads vary, most
share the following characteristics:

g Shared address space
The threads share an address space (memory) with other threads. They
can read and write the same variables and can execute the same code.

g Private execution context
Each thread has its own general-purpose and floating-point registers.

g Thread private data
Some operating systems allow a program to declare thread private data.
This declaration provides each thread with its own copy of the variable.
Changes made by one thread to its private variables are not seen by
other threads.

g Private execution stack
Each thread has an address space reserved for its execution stack. How-
ever, one thread’s stack can be read and written by other threads sharing
the address space.

TotalView can help you debug threaded applications on a variety of operat-
ing systems. On some of these systems, a process consists of an address
space and a list of one or more threads. Other operating systems imple-
ment tasks or threads running in the computer’s memory space and do not
support multiple processes or address spaces on a single machine.
6 TotalView Users Guide Version 5.0

TotalView Features

Controlling Processes and Threads
Because the ways operating systems handle threads differ, TotalView imple-
ments a general model of address spaces and execution contexts. A
TotalView thread refers to a thread or task with an execution context, and
process refers to an address space or computer memory that can run one or
more threads.

Controlling Processes and Threads

TotalView offers a full range of methods for controlling processes and
threads. Using TotalView, you can:

g Automatically attach to processes
When your program creates processes and threads on your current com-
puter or another, TotalView automatically attaches to them, making their
symbol tables available to you and allowing you to manipulate them in
the same way as you manipulate the process originally started under
TotalView’s control.

g Automatically create groups
When processes and threads are created, TotalView automatically adds
them to groups. TotalView places every process and every thread into
two or more groups that can be manipulated using group, process, and
thread commands. Using the CLI (which is TotalView’s Command Line
Interface), you can create groups that can be manipulated from the
TotalView Process Window. For example, you can step all threads in a
group without stepping other threads in their processes.

g Start and stop processes and threads
You can start, stop, resume, delete, restart, and even reload recompiled
versions of your program.

g Attach to existing processes
TotalView lets you examine processes that are not yet running under its
control. Attaching to one of these processes is as easy as double-click-
ing on the process’s name in the Root Window.

g Examine core files
You can load a core file and examine it in the same way as any other exe-
cutable. Or, you can load a core file at anytime.
Version 5.0 TotalView Users Guide 7

1
TotalView Features

Using Action Points
g Single-step your program
You can single step through your program or step over function calls. You
can tell your program to execute to a selected source line or instruction,
or continue executing until a function completes its execution. TotalView
supports process-level, process group-level, and, on some systems,
thread-level single stepping.

g Change the way TotalView handles signals
You can indicate how TotalView handles signals. For example, it can stop
the process and place it in a stopped or error state, sending the signal
on to the process, or discarding the signal.

Using Action Points

TotalView provides a broad range of action points. (Action points are
places in a program where you stop execution or evaluate an expression.)

Action points: You can set, delete, suppress, unsuppress, enable, and
disable action points at the source and machine levels. TotalView lets you
set the following action points:

g Breakpoints stop execution when a statement or instruction executes.

g Barrier breakpoints hold other threads until all threads in a group
reach a “barrier” statement or instruction.

g Conditional breakpoints only perform an action if a code fragment
(expression) is satisfied.

g Evaluation points execute code you create at a statement or instruc-
tion.

g Watchpoints monitor when changes occur to a variable’s value.

Expressions and code fragments: TotalView lets you write and
evaluate code fragments, including function calls used by the current pro-
cess. While differences exist between platforms, you can write fragments in
C, C++, Fortran, and assembler. On most platforms, TotalView compiles
code fragments. This is a great way to test a fix without altering your source
and recompiling it.
8 TotalView Users Guide Version 5.0

TotalView Features

Examining and Manipulating Data
Examining and Manipulating Data

TotalView provides many ways for you to examine your code.

g Diving
You can obtain additional information about almost everything that is
displayed in TotalView by clicking on it. This process, which is called div-
ing, tells TotalView that it should display the selected information in
some way.

For example, if you double-click on a function name (or use the View >
Dive command), TotalView display the function’s source code in the Pro-
cess Window’s Source Pane.

You can dive into a variable in the same way that you dive into a func-
tion. That is, either double-click on the variable name or select View >
Dive while the cursor is over the variable. TotalView lets you examine lo-
cal variables, registers, global variables, machine-level instructions, and
areas of memory.

You can dive upon almost everything that you see in a TotalView window.

g Search for functions
TotalView’s View > Lookup Function command lets you search for func-
tions.

g Change a variable’s type and value—Casting and Type Transfor-
mation
You can alter a variable’s type to display the data in different formats
and you can edit a variable value or a memory location, changing it for
the current running process.

Using the CLI, you can tell TotalView that it should display information in
the way you want it displayed. For example, you can display information
in a C++ STL as if it were a normal structure or array. (Information on
“type transformation” can be found in the CLI GUIDE.

g Laminate variables
You can examine the value of a variable across multiple processes and
multiple threads in a single Variable Window. (This ability to display the
multiple values of a variable is called lamination.)

g Examine array data
You can filter array data to look for elements that match a filter expres-
sion. You can also sort data and tell TotalView to display statistical infor-
mation about an array’s contents.
Version 5.0 TotalView Users Guide 9

1
TotalView Features

Distributed Debugging
Distributed Debugging

TotalView provides a distributed architecture that supports many different
operating environments, including:

g Remote programs running on a separate machine from TotalView.

g Multiprocess programs running on a multiprocessor machine.

g Multiprocess programs running on a cluster of homogeneous machines.

g Distributed programs running on a set of homogeneous machines.

NOTE Distributed debugging requires that all machines have the same ar-
chitecture and operating system.

The machine on which TotalView is running is known as the host machine,
while the machine on which the process being debugged is running is the
target machine. The host and target machines can be the same machine.

If the host and target machines are different, TotalView starts a process on
each remote target machine. TotalView communicates with this process by
using standard TCP/IP protocols. (See Figure 4.)

Debugging distributed programs does not differ from debugging nondis-
tributed programs: TotalView offers the same set of features for each.

FIGURE 4: TotalView Debugger Server

Remote
Executable

TotalView
Debugger
Server

Network

TotalView

Native
Executable
10 TotalView Users Guide Version 5.0

TotalView Features

Visualization
Depending on the platform, TotalView can debug programs that use the
HPF, MPI, IBM Parallel Environment (PE), OpenMP, pthreads, and Parallel
Virtual Machine (PVM) libraries.

Visualization

TotalView gives you a variety of ways to visualize your data.

g The TotalView Visualizer allows you to graphically view array data in the
programs you are debugging. This gives you an overall picture of your
data and helps you find incorrect data quickly and easily.

NOTE The Visualizer is not available on Linux Alpha and 32-bit SGI Irix.

Each time you visualize the same array, the Visualizer image is updated.
See Figure 5:

g TotalView’s Call Tree (see Figure 6) lets you see the sequence of calls as-
sociated with any current routine. This display is dynamic as it displays a
program’s call tree at the time when you ask for it.

FIGURE 5: Sample Array Visualization
Version 5.0 TotalView Users Guide 11

1
TotalView Features

Visualization
g TotalView’s Message Queue Graph visually displays the processes (as
rank numbers) that are linked together by the messages that each send
and receive. You can control what you are seeing by selecting Pending
Sends, Pending Receives, and Unexpected Messages. Another control
lets you select which messages participate in the graph. (See Figure 7.)

FIGURE 6: Sample Call Tree
12 TotalView Users Guide Version 5.0

TotalView Features

Context-Sensitive Help and Documentation
Context-Sensitive Help and Documentation

You can request help from any window being displayed. The Help com-
mand displays context-sensitive information about the current window or
dialog box or the debugging operation you are currently using. TotalView
displays the information in a separate help window.

NOTE Context-sensitive help is not available on Linux Alpha platforms.

FIGURE 7: Sample Message Queue Graph
Version 5.0 TotalView Users Guide 13

1
TotalView Features

Context-Sensitive Help and Documentation
Also contained within the help is the full text of all TotalView documents.
HTML and PDF versions of our documents are located on our Web site,
which is www.etnus.com. Some of our customers also install this informa-
tion locally.

Most documentation is available in printed form. Information about this
documentation is on our Web site.
14 TotalView Users Guide Version 5.0

Version 5.0
Chapter 2
TotalView Basics
This chapter introduces you to the TotalView interface and describes:

g Compiling Programs
g Starting TotalView
g Using the Mouse Buttons
g Using the Root Window
g The Process Window
g Diving into Objects
g Editing Text
g Searching for Text
g Searching for Functions and Variables
g Saving the Contents of Windows
g Exiting from TotalView

Compiling Programs

Before starting TotalView, compile your source code with the –g compiler
option. This option tells your compiler to generate symbol table debugging
information. For example:

cc –g –o executable source_program

For more information on compiling your program for TotalView, see “Compil-
ing Programs” on page 33.

On some platforms, you may need to use additional compiler options. Re-
fer to Appendix A, ”Compilers and Platforms” on page 311 for more informa-
tion.
TotalView Users Guide 15

2
TotalView Basics

Starting TotalView
TotalView also lets you debug programs that were not compiled with the –g
option or programs for which you do not have source code. For more infor-
mation, refer to “Examining Source and Assembler Code” on page 129.

When TotalView reads a file, it uses the file’s extension to determine the
programming language that you used to write the file’s contents, as shown
in the following table.

TotalView identifies a program as FORTRAN 77 or Fortran 90 when:

g The compiler’s debugging information includes the programming lan-
guage that you used.

g The source file name has an .f90 or .F90 suffix.

g The code uses Fortran 90 features such as assumed shape arrays or
pointers.

If TotalView cannot identify a source file’s language, it assumes that the
source language is C. If this causes problems, you will need to change the
file’s extension to one that TotalView recognizes.

Starting TotalView

Depending on the kind of program you are debugging, there are several
ways to start TotalView. The simplest method uses the totalview command
and your program’s name:

totalview exectuable

A similar command can be used to start the CLI:

totalviewcli executable

TABLE 1: Source Language Mapping

File Extension Source Language
.cxx, .cc, .cpp, .C, .hxx, .H C++
.F, .f, .F90, .f90 FORTRAN 77 or Fortran 90
.hpf, .HPF HPF
All others C
16 TotalView Users Guide Version 5.0

TotalView Basics

Starting TotalView
You can also invoke the CLI by selecting the Tools > Command Line com-
mand. The CLI is described in the CLI GUIDE.

In many cases, the way you will start your program requires that you define
an environment, pass in command-line arguments, set the number of pro-
cesses, and so on. You will find this information in the following places:

g “Starting TotalView” on page 34.

g “Setting Up Parallel Debugging Sessions” on page 77.

See Chapter 13, “TotalView Command Syntax” on page 289 for complete infor-
mation on the totalview command.

Initializing the Debugger

An initialization file contains commands that let you modify the TotalView
and CLI environments and add your own functions to this environment.
TotalView allows you to place information in more than one file. These files
can be located in your installation directory, your home directory, or the di-
rectory from which you invoked TotalView. If it is present in one of these
places, TotalView reads and executes its contents.

Typically, .tvdrc files contain command, function, variable definitions, and
function calls that you want executed whenever you start a new debugging
session.

If you add the -s filename option to either the totalview or totalviewcli shell
commands, you can have TotalView execute the CLI commands contained
within filename. Your startup file executes after .tvdrc files execute.

The following figure shows the order in which initialization and startup files
execute:

The -s option lets you, for example, initialize the debugging state of your
program, run the program you are debugging until it reaches some point
where you are ready to begin debugging, and even lets you create a shell
command that starts the CLI.

NOTE The .Xdefaults file, which is actually read by the server when you start X Win-
dows, is only used by the GUI. The CLI ignores it.
Version 5.0 TotalView Users Guide 17

2
TotalView Basics

Using the Mouse Buttons
As part of the initialization process, TotalView exports two environment
variables into your enviroment: LM_LICENSE_FILE and either SHLIB_PATH
or LD_LIBRARY_PATH.

If you have saved a breakpoint file into the same subdirectory as your pro-
gram, TotalView automatically reads the information in this file when it
loads your program.

NOTE The format of a Release 5.0 breakpoint file differs from that used in earlier
releases. While Release 5 versions of TotalView can read breakpoint files created by
earlier versions, earlier versions cannot read a Release 5 breakpoint file.

Using the Mouse Buttons

TotalView uses the buttons on your three-button mouse as follows:

FIGURE 8: Startup and Initialization Sequence

.preferences.tvd

.Xdefaults

global tvdinit.tvd

global .tvdrc

-s startup file

home .tvdrc

local .tvdrc

command options

TABLE 2: Mouse Button Functions

Button Action Purpose How to Use It
Left Select Selects or edits object,

scrolls in windows and
panes

Move the cursor over the ob-
ject and click the button.
18 TotalView Users Guide Version 5.0

TotalView Basics

Using the Root Window
In most cases, a single-click selects what is under the cursor and a double-
click dives on the object. However, if the field is editable, TotalView goes
into its edit mode where you can alter the selected item's value.

In some locations such as the Stack Trace Pane, selecting a line tells
TotalView that it should perform an action. In this case, TotalView dives on
the selected routine. (In this case, diving means that TotalView finds the se-
lected routine and show it in the Source Pane.)

In the tag field area (the area on the left containing source code numbers)
of the Source Pane, the left button sets a breakpoint at that line. TotalView
shows you that it has set a breakpoint by displaying a STOP icon in the tag
field.

Selecting the STOP icon a second time deletes the breakpoint. If, however,
you had created an evaluation or event point—this is indicated by an EVAL
icon—selecting the icon disables it. For more information on breakpoints
and evaluation points, refer to Chapter 9, “Setting Action Points” on page
201.

Using the Root Window

The Root Window appears when you start TotalView. If you do not specify a
program name when starting TotalView, it is the only window that appears.
If you indicate a program name, TotalView will also open a Process Window
for the program.

Middle Paste Writes information previ-
ously copied or cut into
the clipboard

Move the cursor to where you
will be inserting the informa-
tion and click the button; not
all windows support pasting.

Right Context
menu

Displays a menu with
commonly used com-
mands

Move the cursor over an object
and click the button.

Most windows and panes have
context menus; dialog boxes
do not have context menus.

TABLE 2: Mouse Button Functions (Continued)

Button Action Purpose How to Use It
Version 5.0 TotalView Users Guide 19

2
TotalView Basics

Using the Root Window
The Root Window contains four pages, as follows:

g Attached: Displays a list of all the processes and threads being de-
bugged. Initially, the Root Window just contains the name of the program
being debugged. Associated with each is a name, location (if a remote
process), process ID, status, and a list of threads for each process being
debugged if it has begun executing. It also shows the thread ID, status,
and current routine executing for each thread.

Figure 9 shows the Attached Page for an executing multithreaded multi-
process program.

g Unattached: Displays processes over which you have control. If you
cannot attach to one of these processes—for example, you cannot at-
tach to the TotalView process—TotalView displays it in gray. Figure 10
shows the Unattached Page.

g Groups: Lists the groups used by your program. The top pane lists all of
your program’s groups. This list includes all the groups that TotalView
creates and all that you create using the CLI. When you select a group in
the top pane, the group’s members are displayed in the bottom pane.
Figure 11 shows a Groups Page.

FIGURE 9: Root Window Attached Page
20 TotalView Users Guide Version 5.0

TotalView Basics

Using the Root Window
NOTE Until you are comfortable using TotalView’s group model, you are
strongly urged to investigate group membership using this window. This win-
dow gives you considerable insight into how TotalView manipulates groups
and what TotalView causes to run when you execute commands such as step
or go.

FIGURE 10: Root Window Unattached Page

FIGURE 11: Root Window Groups Page
Version 5.0 TotalView Users Guide 21

2
TotalView Basics

The Process Window
g Log: Contains a log of debugging information.

The Process Window

The Process Window displays five panes of information. (The contents of these
panes are discussed later in this section.) The large scrolling list in the mid-
dle of the Process Window is the Source Pane. As its name suggests, this
pane initially contains your source code.

Figure 13 shows the Process Window.

Starting a Process

In many cases, the way you will start a process is as follows:

1 Set a breakpoint in the source code by selecting a boxed line num-
ber.

2 Type the keyboard accelerator g (for the Process > Go command).
The process starts running and then stops at the first breakpoint set.

When debugging a remote process, TotalView displays an abbreviated ver-
sion of the host name on which the process is running within brackets ([])
in the Root Window. The full host name appears in brackets in the title bar

FIGURE 12: Root Window Log Page
22 TotalView Users Guide Version 5.0

TotalView Basics

The Process Window
FIGURE 13: Process Window

Source Pane

Stack Trace
Pane

 Process status Language of routine
 Process ID (PID) Tag field area

Process and thread ID (PID.TID) Current PC
 Navigation controls Thread count
 Thread status Selected thread

Stack Frame
Pane

Action Points
PaneThreads Pane
Version 5.0 TotalView Users Guide 23

2
TotalView Basics

The Process Window
of the Process Window. In Figure 14, the process is running on the machine
hugo.etnus.com, which is abbreviated to [hugo.etn*] in the Root Window.

As you examine the Process Window in Figure 13 (on the previous page),
notice the following:

g The thread ID shown in the Root Window and in the process’s Threads
Pane is the TotalView assigned logical thread ID (or TID) and system as-
signed thread ID (or SYSTID). On systems such as Compaq Tru64 UNIX
where the TID and SYSTID values are the same, TotalView displays only
the TID value.

In other windows, TotalView uses the value pid.tid to identify a process’s
threads.

The Threads Pane shows the list of threads that currently exist in the pro-
cess. The number in the Threads Pane title () is the number of threads

FIGURE 14: Root Window Showing Remote

 Collapse/expand toggle Thread list
 Process ID (PID) Remote process location

Thread status Thread ID (TID/SYSTID)
 Program name
24 TotalView Users Guide Version 5.0

TotalView Basics

The Process Window
that currently exist in the process. When you select a different thread in
this list, TotalView updates the Stack Trace Pane, Stack Frame Pane, and
Source Pane to show the information for that thread. When you dive on
a different thread in the thread list, TotalView finds or opens a new win-
dow displaying information for that thread.

g The Stack Trace Pane shows the call stack of routines that the selected
thread is executing. You can move up and down the call stack by select-
ing the routine (stack frame). When you select a different stack frame,
TotalView updates the Stack Frame and Source Panes to show the infor-
mation about the selected routine.

g The Stack Frame Pane displays all the function parameters, local variables,
and registers for the selected stack frame.

g The information displayed in the Stack Trace and Stack Frame Panes re-
flects the state of the process when it was last stopped. Consequently,
this information is not up-to-date while the thread is running.

g The left margin of the Source Pane—called the tag field area—displays
line numbers and icons indicating something about your program. You
can place a breakpoint at any source code line that displays object
code. (These places are indicated by a boxed line number.) When you
place a breakpoint on a line, TotalView overwrites the line number with a
STOP icon. The arrow in the tag field shows the current location of the
program counter (PC) within the selected stack frame. See Figure 15.

g Point of execution. This means that each thread’s Process Window has
its own unique program counter (PC). When you stop a multiprocess or
multithreaded program, the routine selected in the Stack Trace Pane for
a thread depends on the thread’s PC. When you stop the program, some
threads can be executing in one routine, while others might be executing
elsewhere.

g The Action Points Pane shows the list of breakpoints, evaluation points,
and watchpoints for the process.

FIGURE 15: Process Window Tag Field Area
Version 5.0 TotalView Users Guide 25

2
TotalView Basics

Diving into Objects
Diving into Objects

One of the main functions of the Root Window is quickly display a Process
Window that contains information about the selected processes and
threads. The procedure is simple: you select what you want to see and then
double-click on it. In most cases, you can display more detail about some-
thing by placing the cursor over a name or object and diving into it by dou-
ble-clicking the left mouse button.

NOTE In some cases, single-clicking tells TotalView to dive. For example, diving on a
function name in the Stack Trace Pane tells TotalView to dive into the function.

Table 3 describes some of the information you can dive on.

TABLE 3: Diving

Dive on: Information Displayed by Diving:
Process or thread When you dive on a processor thread in

the Root Window, TotalView finds or
opens a Process Window for that process.
If it cannot find a matching window,
TotalView replaces the contents of an ex-
isting Process Window and shows you the
selected process.

Subroutine The source code for the subroutine replaces
the current contents of the Process Win-
dow—this is called a nested dive. When this
occurs TotalView places a right angle bracket
(>) in the process’s title. Every time it dives,
it adds another angle bracket.

A subroutine must be compiled with source-
line information (usually, with the –g option)
for you to dive into it and see source code. If
the subroutine was not compiled with this
information, TotalView displays the rou-
tine’s assembler code.

FIGURE 16: Nested Dive
26 TotalView Users Guide Version 5.0

TotalView Basics

Diving into Objects
TotalView tries to reuse windows whenever possible. For example, if you
dive on a variable and that variable is already being displayed in a window,
TotalView pops the window to the top of the display. If you want the infor-
mation to appear in a separate window, use the Root Window’s View >
Dive Anew command.

NOTE Using View > Dive Anew on a process or a thread may not create a new
window if TotalView determines that it can reuse a Process Window. If you really
want to see the information in two windows, use the Process Window’s Window >
Duplicate command.

For additional information about displaying variable contents, refer to “Div-
ing in Variable Windows” on page 159.

Other windowing commands that you can use are:

g Window > Duplicate: (Variable Window) Creates a duplicate copy of the
current Variable Window.

g Window > Duplicate Base: (Variable Window) Creates a duplicate copy
of the current Variable Window. In contrast with Window > Duplicate,
this command contains the dive stack.

g File > Close: Closes an open window.

g File > Close Relatives: Closes windows that are related to the current
window but does not close the current window.

g File > Close Similar: Closes the currently open window and all windows
similar to it. When you have lots of similar windows, this is a great time-
saver.

Pointer The referenced memory area appears in a
separate Variable Window.

Variable The contents of the variable appear in a sep-
arate Variable Window.

Array element, structure ele-
ment, or referenced memory
area

The contents of the element or memory area
replaces the contents that were in the Vari-
able Window—this is known as a nested dive.

Routine in the Stack Trace Pane The stack frame and source code for the
routine appear in a Process Window.

TABLE 3: Diving (Continued)

Dive on: Information Displayed by Diving:
Version 5.0 TotalView Users Guide 27

2
TotalView Basics

Editing Text
Editing Text

The TotalView field editor lets you change the values of fields in windows or
change text fields in dialog boxes. To edit text:

1 Click the left mouse button to select the text you wish to change. If
you can edit the selected text, it appears within a highlighted rectan-
gle, and you will see an editing cursor.

2 Edit the text and press Return.

Like other Motif-based applications, you can use your mouse to copy and
paste text within TotalView and to other X-based applications by using your
mouse buttons.

You can also manipulate text by using Edit > Copy, Edit > Cut, Edit > Paste
and Edit > Delete.

Searching for Text

You can search for text strings in most windows using the Edit > Find com-
mand. After invoking this command, TotalView displays the dialog box
shown in Figure 18.

The commands within this dialog box let you search Down (which is to-
wards the end of the current window) or Up (which is the other way). Se-
lecting the Case Sensitive button tells TotalView that it should only locate
text having the same capitalization as the text entered in the Find field.

After you have found a string, you can reexecute the command by using
the Edit > Find Again command.

FIGURE 17: Editing Cursor
28 TotalView Users Guide Version 5.0

TotalView Basics

Searching for Functions and Variables
Searching for Functions and Variables

In many cases, having TotalView locate a variable or a function is much eas-
ier than scrolling through your sources looking it. The View > Lookup
Function and View > Lookup Variable commands, which display the dia-
log box displayed in Figure 19, let TotalView find them for you.

If TotalView does not find the name you entered, it displays a dialog box
with the closest match, as shown in Figure 20.

If you select the OK button and TotalView cannot find the function or vari-
able, it displays a dialog box saying that it found a similar object. If you like
this object, select OK to have it displayed in the Source Pane.

FIGURE 18: Edit > Find Dialog Box

FIGURE 19: View > Lookup Variable Dialog Box
Version 5.0 TotalView Users Guide 29

2
TotalView Basics

Saving the Contents of Windows
Saving the Contents of Windows

You can save the contents of most pages and panes as ASCII text with the
File > Save Pane command. You can also use this command to pipe data
to a UNIX shell command.

When piping information, TotalView pipes the commands to /bin/sh for ex-
ecution. This means that you can use a series of shell commands. For ex-
ample, here is a command that ignores the top five lines of output,
compares the current ASCII text to an existing file, and writes the differ-
ences to another file:

| tail +5 | diff – file > file.diff

FIGURE 20: Spelling Corrector Dialog Box

FIGURE 21: File > Save Pane Dialog Box
30 TotalView Users Guide Version 5.0

TotalView Basics

Exiting from TotalView
Exiting from TotalView

You can exit from TotalView by selecting the File > Exit command. You can
select this command in the Root, Process, and Variable Windows.

After you enter one of these commands, TotalView displays a dialog box.
Select Yes to exit. Otherwise, select No. As TotalView exits, it kills all pro-
grams and processes that it started. However, programs and processes
used that TotalView did not start, continue to execute.

NOTE If you have a CLI window open, TotalView also closes this window. Similarly,
if you type “exit” within the CLI, the CLI will close TotalView windows.

FIGURE 22: File > Exit Dialog Box
Version 5.0 TotalView Users Guide 31

2
TotalView Basics

Exiting from TotalView
32 TotalView Users Guide Version 5.0

Version 5.0
Chapter 3
Setting Up a Debugging Session
This chapter explains how to set up basic TotalView sessions. It also describes
some common commands and procedures. For information on setting up re-
mote debugging sessions, see Chapter 4, “Setting Up Remote Debugging Sessions”
on page 61. For information on setting up parallel debugging sessions, see
Chapter 5, “Setting Up Parallel Debugging Sessions” on page 77.

In this chapter, you will learn about:

g Compiling Programs
g Starting TotalView
g Loading Executables
g Attaching to Processes
g Detaching from Processes
g Examining a Core File
g Processes and Thread State
g Handling Signals
g Setting Search Paths
g Setting Command Arguments
g Setting Input and Output Files
g Setting Preferences
g Setting Environment Variables
g Monitoring TotalView Sessions

Compiling Programs

Before you start to debug a program, you must compile the program with
the appropriate options and libraries for your situation. Table 4 presents
TotalView Users Guide 33

3
Setting Up a Debugging Session

Starting TotalView
some general considerations, but you should check Appendix A, “Compilers
and Platforms,” on page 311 to determine the exact syntax and any other
considerations.

Starting TotalView

TotalView can operate on programs that run in many different computing
environments and which make use of a variety of parallel processing
modes. This section looks at general ways to start TotalView. More detailed
information can be found in TotalView Command Syntax on page 289.

TABLE 4: Compiler Considerations

Compiler Option or
Library What It Does When to Use It
Debugging symbols option
(usually –g)

Generates debugging in-
formation in the symbol
table.

Before debugging any
program with TotalView.

Optimization option
(usually –O)

Moves code to optimize
execution of program.

Some compilers do not
let you use the –O option
with the –g option.

Even if you can, we rec-
ommend against it be-
cause using the –O op-
tion when debugging
your program can pro-
duce strange results.

After you finish debug-
ging your program with
TotalView.

Multiprocess programming
library (usually dbfork)

Uses special versions of
the fork() and execve()
system calls.

Using dbfork is dis-
cussed in “Linking with
the dbfork Library” on
page 317.

Before debugging a
multiprocess program
that explicitly calls
fork() or execve().

Refer to “Processes That
Call fork()” on page 211
and “Processes That Call
execve()” on page 211.
34 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Starting TotalView
The basic command structure for starting TotalView is:

totalview [executable [corefile]] [options]

where executable specifies the name of the executable file to be debugged
and corefile specifies the name of the core file to be debugged.

NOTE If you are starting the CLI, you will type “totalviewcli” rather than “total-
view”.

Here are some of the common ways to start TotalView:

totalview Starts TotalView without loading a program or core
file. After TotalView starts, you can load a program by
using the File > New Program command from the
Root Window.

totalview executable
Starts TotalView and loads the executable program.

totalview executable corefile
Starts TotalView and loads the executable program and
the corefile core file.

totalview executable –a args
Starts TotalView and passes all following arguments
(specified by args) to the executable program. If you use
the –a option, it must appear after all other TotalView
options on the command line. If you do not use –a
and want to add arguments after TotalView loads your
program, use the Process > Startup command.

totalview executable –remote hostname_or_address[:portnumber]
Starts TotalView on the local host and the TotalView
Debugger Server (tvdsvr) on the remote host. Loads
the program specified by executable for remote debug-
ging. You can specify a host name or a TCP/IP address,
and optionally, a TCP/IP port number for portnumber.

Within a debugging session, you can reload programs and shared libraries.
If these executable files have changed since you started debugging your
program and you do not use the Group > Reload Symbols command (see
“Reloading a Recompiled Executable” on page 38) to reload them, TotalView dis-
plays an error message because its symbol tables would not be up-to-date.
Version 5.0 TotalView Users Guide 35

3
Setting Up a Debugging Session

Loading Executables
For more information on:

g Debugging parallel programs such as MPI, PVM, or HPF, refer to Chapter
5, “Setting Up Parallel Debugging Sessions” on page 77.

g The totalview command, refer to Chapter 13, “TotalView Command Syntax”
on page 289.

g Remote debugging, refer to “Starting the TotalView Debugger Server” on page
61 and Chapter 14, “TotalView Debugger Server (tvdsvr) Command Syntax” on
page 303.

Loading Executables

TotalView can debug programs on local and remote hosts and programs
accessed over serial lines. The File > New Program command located on
either the Root or Process Windows loads local and remote programs, core
files, and processes that are already running. Figure 23 shows the File >
New Program dialog box.

FIGURE 23: File > New Program Dialog Box
36 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Loading Executables
This dialog box lets you:

g Load a new executable

Type its path name into the Executable field

g Load a core file

Type its name into the Core File field and type the associated execut-
able’s path name into the Executable field.

g Load a process ID

Type its process ID into the Process ID field and type the associated exe-
cutable’s path name into the Executable field.

If you want to debug a program on a remote machine, enter the host name
or IP address of the remote machine in the Remote Host field. (If the pro-
gram is local, make sure that the Local button is selected.)

You can use a full or relative path name in the Executable and Core File
fields. If you enter a simple file name, TotalView searches for it in the list of
directories specified with the File > Search Path command or named in
your PATH environment variable.

If you enter an executable name and New Process is selected, TotalView al-
ways loads a new copy of your program. This means that if it is already
loaded, you will get another copy. In contrast, if you are trying to reload an
already existing program, TotalView simply pops the program’s Process Win-
dow. That is, it makes the window visible.

Debugging over a serial line is discussed in “Debugging Over a Serial Line” on
page 72.

More on Loading Remote Executables

If TotalView fails to automatically load a remote executable, you may need
to disable the autolaunch feature for this connection and start the
TotalView Debugger Server (tvdsvr) manually. Then, you can specify host-
name:portnumber in step 2, where portnumber is the TCP/IP port number on
which the debugger server is communicating with TotalView. Refer to “Start-
ing the TotalView Debugger Server” on page 61 for more information.

NOTE You cannot examine core files on remote nodes.
Version 5.0 TotalView Users Guide 37

3
Setting Up a Debugging Session

Loading Executables
You can connect to a remote machine in two ways: with the –remote op-
tion on the command line when you start TotalView or with the File > New
Program command after you start TotalView.

You can also attach to a remote process by first connecting to a remote
host using the File > New Program command and then displaying the
Unattached Page of the Root Window. You can now attach to these pro-
cesses by diving into them.

1 Connect to the remote host. For details, see “Starting the TotalView
Debugger Server” on page 61.

2 After connecting to the remote host, bring up a list of unattached
processes. You can attach to these processes by diving into them.
For details, see “Attaching Using the Unattached Page” on page 39.

NOTE If TotalView supports a parallel process runtime library (for example, MPI,
PVM, or HPF), it automatically connects to remote hosts. For more information, see
Chapter 5, “Setting Up Parallel Debugging Sessions” on page 77.

For details on the syntax for the –remote command-line option, see “Start-
ing TotalView” on page 34.

Reloading a Recompiled Executable

If you edit and recompile your program while you are debugging it, you can
load the updated program, as follows:

1 Confirm that all processes using the executable have exited. If they
have not, invoke the Process > Detach or Group > Delete commands
from the Process Window.

2 Confirm that duplicate copies of the process do not exist by using
the shell’s ps command. If duplicate processes exist, delete them us-
ing the shell’s kill command.

3 In the Process Window, select the Group > Reload Symbols com-
mand. TotalView updates the Process Window with the new source
file and loads the new executable file.
38 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Attaching to Processes
Attaching to Processes

If a program you are testing is hung or looping (or misbehaving in some
other way), you can attach to it while it is running. You can attach to single
processes, multiprocess programs, and remote processes.

To attach to a process, either use the Unattached Page within the Root
Window or use the File > New Program commands located on the Root
and Process Windows. (Using the Unattached Page is easier if the process is
listed. However, if it is not there, you must use the File > New Program
command.)

You may also have to use the New Program dialog box to attach to a pro-
cess when TotalView can determine the executable file name using the pro-
cess listing in the Unattached Page.

If the process or any of its children calls the execve() routine, you may
need to attach to it by creating a new Process Window. This is because
TotalView uses the ps command on most platforms to obtain the name of
the process executable. Since ps can give incorrect names, TotalView may
not find it.

NOTE When you exit from TotalView, TotalView kills all programs and processes
that it started. However, programs and processes that were executing before you
brought them under TotalView’s control continue to execute.

Attaching Using the Unattached Page

To attach to a process using the Unattached Page, go to the Root Window
and complete the following steps:

1 Select the Unattached Page Tab.

This page lists the process ID, status, and name of each process associ-
ated with your username. The processes that appear dimmed are those
that are being debugged or those that TotalView will not allow you to de-
bug (for example, the TotalView process itself).

The processes at the top of Figure 24 are all local. The remaining pro-
cesses are remote.

If you are debugging a remote process, this page also shows processes
running under your username on each remote host name. You can at-
Version 5.0 TotalView Users Guide 39

3
Setting Up a Debugging Session

Attaching to Processes
tach to any of these remote processes. For more information on remote
debugging, refer to “Starting the TotalView Debugger Server” on page 61 and
Chapter 14, “TotalView Debugger Server (tvdsvr) Command Syntax” on page
303.

2 Dive into the process you wish to debug by double-clicking on it.

A Process Window appears. The right arrow points to the current pro-
gram counter (PC), indicating where the program was executing when
TotalView attached to it.

Attaching Using File > New Program

To attach to a process by using the Root Window’s File > New Program
command, follow these steps:

1 Use the ps shell command to obtain the process ID (PID) of the pro-
cess.

2 Select the File > New Program command. TotalView displays the dia-
log box shown in Figure 25.

Enter a file name in the Executable field. This name can be a full or rela-
tive path name. If you supply a simple file name, TotalView searches for
it in the directories specified with the File > Search Path command and
specified by your PATH environment variable.

Enter the process ID (PID) of the unattached process into the Process ID
field.

FIGURE 24: Unattached Page
40 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Detaching from Processes
3 Select OK.

If the executable is a multiprocess program, TotalView will ask if you
want to attach to all relatives of the process. To examine all processes,
select Yes.

If the process has children that call execve(), TotalView tries to deter-
mine each child’s executable. If TotalView cannot determine the execut-
able, you must delete (kill) the parent process and start it again using
TotalView.

Finally, a Process Window appears. The right arrow points to the current
program counter (PC), which is where the program was executing when
TotalView attached to it.

Detaching from Processes

You can detach from processes that TotalView did not create when you are
done with them by using the following procedure:

FIGURE 25: File > New Program Dialog Box
Version 5.0 TotalView Users Guide 41

3
Setting Up a Debugging Session

Examining a Core File
1 Open a Process Window on the process.

2 If you want to send the process a signal, select the Thread > Continu-
ation Signal command. Choose the signal that TotalView should send
to the process when it detaches from the process. For example, to
detach from a process and leave it stopped, set the continuation sig-
nal to SIGSTOP.

3 Select the Process > Detach command.

When you detach from a process, TotalView removes all breakpoints that
were set within it.

Examining a Core File

If a process encounters a serious error and dumps a core file, you can ex-
amine it using one of the following methods:

g Start TotalView as follows:

totalview filename corefile [options]

g Select the File > New Program command from the Root Window. In the
middle section of the dialog box, type the name of the core file in the
Core File field, and then select OK.

FIGURE 26: Thread > Continuation Signal Dialog Box
42 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Processes and Thread State
NOTE You can only debug local core files. You can, however, debug core files at a
remote location if you log on to the remote machine and then start TotalView upon
the now local core file. In this case, TotalView is running on the remote machine
(that is, TotalView is now local to the machine upon which the application and core
file reside).

The Process Window displays the core file, with the Stack Trace, Stack
Frame, and Source Panes showing the state of the process when it dumped
core. The title bar of the Process Window names the signal that caused the
core dump. The right arrow in the tag field of the Source Pane indicates the
value of the program counter (PC) when the process encountered the error.

You can examine the state of all variables at the time the error occurred.
“Examining and Changing Data” on page 153 contains more information.

If you start a process while you are examining a core file, TotalView stops
using the core file and starts a fresh process using that executable.

Processes and Thread State

Process and thread state is displayed in:

g The Attached Page of the Root Window, for processes and threads.

g The Unattached Page of the Root Window, for processes.

g The process and thread status bars of the Process Window.

g The Threads Pane of the Process Window, for threads.

Figure 27 shows TotalView displaying process state information in the At-
tached Pane:

The status of a process includes the process location, the process ID, and
the state of the process. (These characters are explained in “Attached Process
States” on page 44.)

The Unatttached Page lists all processes associated with your username.
The information in this window is similar to the information in the Attach
Page, differing only in that processes being debugged are dimmed out.

NOTE If, as they are on some systems, the TotalView-assigned thread ID and the
system-assigned thread ID are the same, TotalView displays only one ID value.
Version 5.0 TotalView Users Guide 43

3
Setting Up a Debugging Session

Processes and Thread State
The status bars in the Process Window display similar information. Here’s
an example:

Attached Process States

Process and thread state is displayed using the following symbols:

FIGURE 27: Attached Page Showing Process and Thread Status

FIGURE 28: Process and Thread Labels in the Process Window

TABLE 5: Attached Process and Thread States

State Code State Name

blank Exited or never created

B At breakpoint

Collapse/expand toggle Process status
TotalView thread ID (TID) Action point ID number
System thread ID (SYSTID) Program name
Process ID (PID)

1

44 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Handling Signals
The Error state usually indicates that your program received a fatal signal
from the operating system. Signals such as SIGSEGV, SIGBUS, and SIGFPE
can indicate an error in your program. See “Handling Signals” on page 45 for
information on controlling how TotalView handles signals that your pro-
gram receives.

Unattached Process States

The state information for a process displayed in the Unattached Page is de-
rived from the system. The state characters TotalView uses to summarize
the state of an unattached process do not necessarily match those used by
the system.

Table 6 summarizes the possible states in the Unattached Page.

Handling Signals

If your program contains a signal handler routine, you may need to adjust
the way TotalView handles signals. You can do this by using:

E Error reason

K In kernel

M Mixed

R Running

T Stopped reason

W At watchpoint

TABLE 6: Summary of Unattached Process States

State Code State
I Idle
R Running
S Sleeping
T Stopped
Z Zombie

TABLE 5: Attached Process and Thread States (Continued)

State Code State Name
Version 5.0 TotalView Users Guide 45

3
Setting Up a Debugging Session

Handling Signals
g A dialog box (described in this section)

g An X resource (see totalview*signalHandlingMode on page 281)

g The -signalHandlingMode command-line option to the totalview com-
mand (refer to “TotalView Command Syntax” on page 289)

Unless you tell it otherwise, here is how TotalView handles UNIX signals:

TotalView uses the SIGTRAP and SIGSTOP signals internally. If the process
encounters either signal, TotalView neither stops the process with an error
nor passes the signal back to your program. Further, you cannot alter the
way TotalView uses these signals.

On some systems, hardware registers can affect how signals such as
SIGFPE are handled. For more information, refer to “Interpreting Status and
Control Registers” on page 151 and Appendix C, “Architectures,” on page 337.

NOTE On SGI machines, setting the TRAP_FPE environment variable to any value in-
dicates that your program will trap underflow errors. If you set this variable, how-
ever, you will also need to use the File >Signals dialog box to indicate what
TotalView should do with SIGFPE errors. (In most cases, you will set SIGFPE to Re-
send.) As an alternative, you can use the –signal_handling_mode “action_list” op-
tion (see page 299)or the totalview*signalHandlingMode X resource (see page 281)
to “Resend=SIGFPE”.

You can change the signal handling mode by going to the Process Window
and selecting the File > Signals command. The dialog box shown in
Figure 29appears.

TABLE 7: Default Signal Handling Behavior

Signals that TotalView Passes Back
to Your Program

Signals that TotalView Treats as an
Error

SIGHUP SIGIO SIGILL SIGPIPE
SIGINT SIGIO SIGTRAP SIGTERM
SIGQUIT SIGPROF SIGIOT SIGTSTP
SIGKILL SIGWINCH SIGEMT SIGTTIN
SIGALRM SIGLOST SIGFPE SIGTTOU
SIGURG SIGUSR1 SIGBUS SIGXCPU
SIGCONT SIGUSR2 SIGSEGV SIGXFSZ
SIGCHLD SIGSYS
46 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Handling Signals
NOTE The signal names and numbers shown in the dialog box are platform-spe-
cific.

When your program encounters an error signal, TotalView stops all related
processes. If you do not want this behavior, deselect the Stop control
group on error signal (which is found on the Options Page of the File >
Preference’s dialog box).

Also by default, when your program encounters an error signal, TotalView
opens or raises the Process Window. Deselecting the Open process
window on error signal check box, found on the Options Page of the
File > Preference’s dialog box, tells TotalView that it should not open or
raise the window. You can also use an X resource (totalview*popOnError
on page 281) or the –pop_on_error command-line option to create a de-
fault setting for this check box.

If processes in a multiprocess program encounter an error, TotalView only
opens a Process Window for the first process that encounters an error. This
stops TotalView from filling up the screen with Process Windows.

FIGURE 29: File > Signals Dialog Box
Version 5.0 TotalView Users Guide 47

3
Setting Up a Debugging Session

Setting Search Paths
If you select the Open process window at breakpoint check box, which is
found on the File > Preference’s Action Points Page, TotalView opens or
raises the Process Window when your program reaches a breakpoint. You
can also set TotalView’s default behavior using the –pop_at_breakpoint
command-line option or an X Resource (totalview*popAtBreakpoint on
page 280)

If necessary, scroll the signal list to the signal being changed. Make your
changes by selecting one of the following radio buttons:

Error Stops the process, places it in the error state, and dis-
plays an error in the title bar of the Process Window. If
the Stop control group on error signal check box is
selected, TotalView also stops all related processes.
You should select this signal handling mode for severe
error conditions such as SIGSEGV and SIGBUS sig-
nals.

Stop Stops the process and places it in the stopped state.
Select this signal handling mode if you want TotalView
to handle this signal the same as a SIGSTOP signal.

Resend Sends the signal to the process. If your program con-
tains a signal handling routine, you should use this
mode for all the signals that it handles. By default, the
common signals for terminating a process (SIGKILL
and SIGHUP) use this mode.

Ignore Discards the signal and restarts the process without a
signal.

NOTE Do not use Ignore mode for fatal signals, such as SIGSEGV and SIGBUS. If
you do, TotalView can get caught in a signal/resignal loop with your program; the
signal will immediately recur because the failing instruction will reexecute repeat-
edly.

Setting Search Paths

If your source code, executable, or object files reside in different directo-
ries, set search paths for these directories with the File > Search Path com-
mand. TotalView searches the following directories (in order):
48 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Setting Search Paths
1 The current working directory (.).

2 The directories you specify by using the File > Search Path command
in the exact order you enter them in the dialog box. When you enter
them, enter one path name to a line.

3 If you specified a full path name for the executable when you started
TotalView, TotalView searches this directory.

4 The directories specified in your PATH environment variable.

These search paths apply to all processes that you are debugging. After
TotalView responds to your selection of the File > Search Path command
by displaying the dialog box. shown in Figure 30, you can enter paths into
the text control

You must enter directories in the order you want them searched. In addi-
tion, you must enter each directory on its own line.

g You can type path names directly.

g You can cut and paste directory information.

FIGURE 30: File > Search Path Dialog Box
Version 5.0 TotalView Users Guide 49

3
Setting Up a Debugging Session

Setting Command Arguments
g You can use the Insert button to tell TotalView to display a file browser
dialog box that lets you browse through the file system, interactively se-
lecting directories. The dialog box is shown in Figure 31.

The current working directory (.) within the File > Search Path dialog box is
the first directory listed in the window. Relative path names are interpreted
as being relative to the current working directory.

Note that if you remove the current working directory, TotalView reinserts it
at the top of the directory.

After you change this list of directories, TotalView again searches for the
source file that is currently displayed in the Process Window.

You can also specify search directories using an X Window System re-
source. Refer to totalview*searchPath on page 281.

Setting Command Arguments

When TotalView creates a process, it uses the name of the file containing
the executable code for the process’s program name. If your program re-

FIGURE 31: Add Directories Dialog Box
50 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Setting Input and Output Files
quires command-line arguments, you must set these arguments before you
start the process, as follows:

1 Select the Arguments Tab within the Process > Startup Parameters di-
alog box. Here is the Arguments Page.

2 Type the arguments to be passed to the program. Separate each ar-
gument with a space, or place each argument on a separate line. If
an argument has spaces in it, enclose the entire argument in double
quotes. When you are done, select OK.

You can also set command-line arguments with the –a option of the
totalview command, as discussed in “Starting TotalView” on page 34.

Setting Input and Output Files

Before TotalView begins executing a program, it determines how it will han-
dle standard input (stdin) and standard output (stdout). Unless you tell it
otherwise, stdin and stdout use the shell window from which TotalView was
invoked.

FIGURE 32: Process > Startup Parameters Dialog Box: Arguments Page
Version 5.0 TotalView Users Guide 51

3
Setting Up a Debugging Session

Setting Preferences
You can redirect stdin or stdout to a file by completing these steps from
the Process Window before you start executing your program:

1 Select the Standard I/O Tab from the dialog box displayed when you
invoke the Process > Startup Parameters command. This page is
shown in Figure 33.

2 Type the name of the file, relative to your current working directory.
Entering names in these boxes produces the same effect as if you
had used a <, >, or >& symbols while in the shell.

3 Select OK.

If the Append check box is set, TotalView opens this file and appends new
information to the end of the file.

If the Same as output check box is selected, TotalView writes stderr infor-
mation to the same output file as stdout.

Setting Preferences

Using the File > Preferences command, you can tailor what TotalView does
in many situations. This section contains an overview of the many prefer-
ences you can set. Complete information can be found in the Help.

FIGURE 33: Process > Startup Parameters Dialog Box: Standard I/O Page
52 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Setting Preferences
Some settings such as the prefixes and suffixes looked at when loading dy-
namic libraries can be different from operating system to operating system.
Consequently, if the setting can differ, TotalView automatically makes the
setting unique for your operating system and this is done transparently.

As TotalView stores a unique version for each platform, you will not see a
preference set on one platform when you are executing on another. In gen-
eral, this applies to the server launch strings and dynamic library paths.

You will find information on setting attributes using X resources, setting
and overriding preferences, and using options in the next section.

g Options. This page contains radio buttons that are either general in na-
ture or that influence different parts of the system.

g Action Points. The commands on this page indicate what else is
stopped, if anything, when TotalView encounters an action point, the
scope of the action point, automatic saving and loading, and if TotalView
should open a Process Window for the process encountering a break-
point.

FIGURE 34: File > Preferences Dialog Box: Options Page
Version 5.0 TotalView Users Guide 53

3
Setting Up a Debugging Session

Setting Preferences
g Launch Strings. See Figure 36 on page 55. The three areas of this page
let you set the launch string used when TotalView launches its remote
debugging server, the Visualizer, and a source code editor. Notice that
there are default values for these launch strings.

g Bulk Launch. See Figure 37 on page 55. The fields and commands on
this page configure TotalView’s bulk launch. See Chapter 4 for more in-
formation.

g Dynamic Libraries. See Figure 38 on page 56. This page lets you control
which symbols are added to TotalView when it loads a dynamic library.

g Parallel. See Figure 39 on page 56. This page lets you define what will oc-
cur when your program goes parallel.

g Fonts. See Figure 40 on page 57. Use this page to specify the fonts used
in the user interface and when TotalView displays your code.

Setting Preferences, Options, and X Resources

While preferences are the best way to set many of TotalView’s features and
characteristics, TotalView also lets you set features and characteristics us-
ing X resources and command-line options.

FIGURE 35: File > Preferences Dialog Box: Action Points Page
54 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Setting Preferences
FIGURE 36: File > Preferences Dialog Box: Launch Strings Page

FIGURE 37: File > Preferences Dialog Box: Bulk Launch Page
Version 5.0 TotalView Users Guide 55

3
Setting Up a Debugging Session

Setting Preferences
FIGURE 38: File > Preferences Dialog Box: Dynamic Libraries Page

FIGURE 39: File > Preferences Dialog Box: Parallel Page
56 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Setting Preferences
Older versions of TotalView did not have a preference system. Instead, you
needed to set values in your .Xdefaults file. For example, setting
totalview*autoLoadBreakpoints to true tells TotalView that is should auto-
matically load a breakpoint file when it loads an executable. Because this
option can also be set as a preference, this resource entry has been depre-
cated. That is, it still can be used but future releases may not support it. You
can now set this variables using the CLI’s dset command.

Some resources are not yet part of TotalView’s preferences. The action or
state set by the resource must continue to be set using an .Xdefaults file.

Chapter 12, “X Resources” on page 275 describes the resources you can set.
Deprecated resources are not included in this appendix.

Preferences and X resources indicate states and characteristics that you in-
tend to exist in all of your TotalView sessions. In some cases, you may want
to set a state for one session or you may want to override one of your glo-
bal settings. This is the function of the command-line options described in
Chapter 13, “TotalView Command Syntax” on page 289.

FIGURE 40: File > Preferences Dialog Box: Fonts Page
Version 5.0 TotalView Users Guide 57

3
Setting Up a Debugging Session

Setting Environment Variables
For example, you can use the -fixed_font_size to override the font size in-
dicated in the preference in the current TotalView session. Any changes
you make use an option are not remembered in other sessions.

Setting Environment Variables

You can set and edit the environment variables that TotalView passes to
processes. When TotalView creates a new process, it passes a list of envi-
ronment variables to the process.

If the Environment Page within the Process > Startup Parameters dialog
box is empty, new processes inherit its environment variables from
TotalView or tvdsvr.

NOTE If you add environment variables, the process no longer inherits environ-
ment variables; it only receives the variables that you enter in this dialog box. There-
fore, if you want to add additional variables to those inherited that would be inher-
ited, you must enter the variables being inherited in addition to the ones you are
adding.

An environment variable is specified as name=value. For example, the fol-
lowing definition creates an environment variable named DISPLAY whose
value is unix:0.0:

DISPLAY=unix:0.0

To add, delete, or modify environment variables, select the Environments
Tab from the dialog box displayed when you invoke the Process >
Startup Parameters command. See Figure 41.

In the displayed dialog box, place each environment variable on a separate
line.

The actions you can now perform are:

g To change the name or value of an environment variable, edit the line.

g To add a new environment variable, insert a new line and specify the
name and value.

g To delete an environment variable, delete the line. If you delete all the
lines, the process inherits TotalView or tvdsvr’s environment.
58 TotalView Users Guide Version 5.0

Setting Up a Debugging Session

Monitoring TotalView Sessions
Monitoring TotalView Sessions

TotalView logs all significant events occurring for all processes being de-
bugged. To view the event log, select the Root Window’s Log Tab. This page
displays a sequential list of these events. See Figure 42 for an example.

FIGURE 41: Process > Startup Parameters Dialog Box: Environment Page
Version 5.0 TotalView Users Guide 59

3
Setting Up a Debugging Session

Monitoring TotalView Sessions
FIGURE 42: Root Window Log Page
60 TotalView Users Guide Version 5.0

Version 5.0
Chapter 4
Setting Up
Remote Debugging Sessions
This chapter explains how to set up TotalView remote debugging sessions. This
chapter discusses:

g Starting the TotalView Debugger Server
g Debugging Over a Serial Line

Starting the TotalView Debugger Server

Debugging a remote process with TotalView only differs from debugging a
native process in that:

g TotalView works with other TotalView processes running on remote
machines. This remote TotalView process is called the TotalView Debug-
ger Server (tvdsvr).

g The performance of your session depends on the performance of the
network between the native and remote machines. If the network is
overloaded, debugging can be slow.

Unless you tell it otherwise, TotalView automatically launches tvdsvr in one
of the following ways.

g It can launch a tvdsvr on each remote host independently. This is called
single process server launch.

g It can launch all remote processes at the same time. This is called bulk
server launch.

Autolaunching greatly simplifies the debugging remote processes since you
do not need to take any action to debug remote processes.
TotalView Users Guide 61

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Single Process Server Launch Options

The Remote Debug Server Launch preferences within the Launch Strings
Page of the File > Preferences dialog box lets you change the command
used to launch remote servers, disable autolaunch, and alter the connec-
tion timeout used by TotalView when it launches tvdsvr.

Here is the Launch Strings Page:

Enable Single Debug Server Launch
If this check box is selected, TotalView will autolaunch
the TotalView Debugger Server (tvdsvr).

Command If Enable Single Debug Server Launch is selected,
TotalView will use this command to launch tvdsvr. For
information on this command and its options, see
“Single Process Server Launch Command” on page 66.

Timeout (Sec.) After TotalView automatically launches tvdsvr, it waits
30 seconds for tvdsvr to respond with a successful
connection message. If the connection is not made in

FIGURE 43: File > Preferences: Server Launch Strings Page
62 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
this time, TotalView times out. You can change this by
entering a value from 1 to 3600 seconds (1 hour).

In addition, you can preset the timeout value using a
TotalView preference. See the online help for more in-
formation.

If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started
the debugger) before the timeout expires, select Yes
in the Question dialog box.

Defaults If you make a mistake or decide you want to go back
to TotalView’s default settings, select this button.

This command also overrides changes you made using
an X resource. TotalView does not immediately
change settings after you press the Defaults button;
instead, it waits until you select the OK button.

Bulk Launch Window Options

The fields within the File > Preferences’s Bulk Launch Page lets you change
the bulk launch command, disable bulk launch, and alter connection time-
outs used by TotalView when it launches tvdsvr programs.

Figure 45 shows this page.

Enable debug server bulk launch
If the check box is selected, TotalView will bulk launch
the TotalView Debugger Server (tvdsvr). By default,
bulk launch is disabled.

Command If bulk launch is enabled, TotalView will use this com-
mand to launch tvdsvr. For information on this com-

FIGURE 44: Stop Job Question Dialog Box
Version 5.0 TotalView Users Guide 63

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
mand and its options, see “Bulk Server Launch on an
SGI MIPs Machine” on page 68 and “Bulk Server Launch
on an IBM RS/6000 AIX Machine” on page 69.

Temporary File Prototypes
These six fields let you create temporary files in bulk
launch operations. For information on these fields,
see Chapter 14 “TotalView Debugger Server (tvdsvr) Com-
mand Syntax” on page 303.

Connection Timeout (in seconds)
After TotalView launches tvdsvr processes, it waits 20
seconds (the Base time) plus 10 seconds for each
server that it will launch for responses from success-
fully connected processes. (The text boxes let you
change these values.) If connections are not made in
this time, TotalView times out.

The Base timeout value can be from 1 to 3600 sec-
onds (1 hour). The incremental Plus value is from 1 to
360 seconds. You can preset these values using
TotalView preferences. See the online help for more
information.

FIGURE 45: File > Preferences Bulk Launch Page
64 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started
the debugger) before the timeout expires, select Yes
in the Question dialog box that will appear.

Defaults If you make a mistake or decide you want to go back
to TotalView’s default settings, select this button.

Starting the Debugger Server Manually

If you cannot make TotalView’s autolaunch feature work on your system,
you can start tvdsvr manually. Unfortunately, this method is not completely
secure: other users could connect to your instance of tvdsvr and begin
using your UNIX UID.

Here is how you manually start tvdsvr:

1 Select the Bulk Launch Tab within the File > Preferences dialog box.
(You can select this command from the Root Window or the Process
Window) The dialog box shown in Figure 43 on page 62 appears.

2 Deselect the Enable debug server bulk launch check box within the
Bulk Launch Tab of the File > Preferences dialog box to disable the
autolaunch feature and then select OK.

3 Log in to the remote machine and start tvdsvr:

tvdsvr –server

If you do not (or cannot) use the default port number (4142), you will
need to use the –port or –search_port options. For details, refer to
Chapter 14 “TotalView Debugger Server (tvdsvr) Command Syntax” on page
303.

After printing out the port number and the assigned password, the
server begins listening for connections. Be sure to make note of the
password; you will need to enter it later in step 5.

NOTE Because using the -server option is not completely secure, it must be
explicitly enabled. (This is usually done by your system administrator.) For
details, see “–server” on page 306.

4 From the Root Window, select the File > New Program command.
Type the name in the Executable field and the hostname:portnumber in
the Remote Host field.

Select OK.
Version 5.0 TotalView Users Guide 65

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
5 TotalView now tries to connect to tvdsvr.

When TotalView prompts you for the password, enter the password that
tvdsvr displayed in step 3.

Figure 46 summarizes the steps used when you start tvdsvr manually.

Single Process Server Launch Command

By default, TotalView uses the following command string when it automati-
cally launches the debugger server for a single process:

%C %R –n "tvdsvr –working_directory %D –callback %L \
–set_pw %P –verbosity %V"

where:

%C Expands to the name of the server launch command
being used. On most platforms, this is rsh. On HP ma-
chines, this command is remsh. If the
TVDSVRLAUNCHCMD environment variable exists,
TotalView will use its value instead of its platform-spe-
cific default value.

%R Expands to the host name of the remote machine that
you specified in the File > New Program command.

–n Tells the remote shell to read standard input from
/dev/null; that is, it immediately received an EOF sig-
nal.

FIGURE 46: Manual Launching of Debugger Server

Network

2

tvdsvr

1
TotalView

Remote
Executable

 Makes connection
 Listens
66 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
–working_directory %D
Makes %D the directory to which TotalView will be
connected. %D expands to the absolute path name of
the directory.

Using this option assumes that the host machine and
the target machine mount identical file systems. That
is, the path name of the directory to which TotalView
is connected must be identical on the host and target
machines.

After changing to this directory, the shell will invoke
the tvdsvr command.

You must make sure that TotalView directory is on
your path on the remote machine.

–callback %L Establishes a connection from tvdsvr to TotalView. %L
expands to the host name and TCP/IP port number
(hostname:port) upon which TotalView is listening for
connections from tvdsvr.

–set_pw %P Sets a 64-bit password. TotalView must supply this
password when tvdsvr establishes a connection with
it. %P expands to the password that TotalView auto-
matically generated. For more information on this
password, see Chapter 14 “TotalView Debugger Server
(tvdsvr) Command Syntax” on page 303.

–verbosity %V Sets the verbosity level of the TotalView Debugger
Server. %V expands to the current TotalView verbos-
ity setting.

You can also use the %H option with this command. This option is dis-
cussed in “Bulk Server Launch on an SGI MIPs Machine” on page 68.

To set the server launch command that will be invoked whenever you start
TotalView, you can set a TotalView preference. See the online help for more
information.

For information on the complete syntax of the tvdsvr command, refer to
“TotalView Debugger Server (tvdsvr) Command Syntax” on page 303.
Version 5.0 TotalView Users Guide 67

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Bulk Server Launch on an SGI MIPs Machine

On an SGI machine, the launch string used for a bulk server launch is simi-
lar to the single process server launch and is:

array tvdsvr –working_directory %D –callback_host %H \
–callback_ports %L –set_pws %P –verbosity %V

where:

–working_directory %D
Makes %D the directory to which TotalView will be
connected. %D expands to the absolute path name of
the directory.

Note that the command assumes that the host ma-
chine and the target machine mount identical file sys-
tems. That is, the path name of the directory to which
TotalView is connected must be identical on both the
host and target machines.

After performing this operation, the TotalView Debug-
ger Server is started.

–callback_host %H
Names the host upon which the callback is made. %H
expands to the host name of the machine upon which
TotalView is running.

–callback_ports %L
Names the ports on the host machines that are used
for callbacks. %L expands to a comma-separated list
of the host names and TCP/IP port numbers (host-
name:port,hostname:port...) on which TotalView is listen-
ing for connections from tvdsvr.

–set_pws %P Sets 64-bit passwords. TotalView must supply these
passwords when tvdsvr establishes the connection
with it. %P expands to a comma-separated list of 64-
bit passwords that TotalView automatically generates.
For more information, see Chapter 14 “TotalView De-
bugger Server (tvdsvr) Command Syntax” on page 303.

–verbosity %V Sets the verbosity level of the TotalView Debugger
Server. %V expands to the current TotalView verbos-
ity setting.
68 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
You must enable tvdsvr’s use of the array command by adding the follow-
ing information to the /usr/lib/array/arrayd.conf file:

#
Command that allow invocation of the TotalView Debugger
server when performing a Bulk Server Launch.
#
command tvdsvr

invoke /opt/totalview/bin/tvdsvr %ALLARGS
user %USER
group %GROUP
project %PROJECT

For information on the complete syntax of the tvdsvr command, refer to
Chapter 14 “TotalView Debugger Server (tvdsvr) Command Syntax” on page
303.

Bulk Server Launch on an IBM RS/6000 AIX Machine

On an IBM RS/6000 AIX machine, the launch string used for a bulk server
launch is:

%C %H -n “poe –pgmmodel mpmd –resd no –tasks_per_node 1
–procs %N –hostfile %t1 –cmdfile %t2”

where the elements unique to TotalView are:

%N The number of servers that will be launched.

%t1 A temporary file created by TotalView that contains a
list of the hosts upon which tvdsvr will run.

TotalView generates this information by expanding the
%R symbol entered within the Bulk Launch prefer-
ences.

%t2 A file that contains the commands to start the tvdsvr
processes on each machine. TotalView creates these
lines by expanding the following template:

tvdsvr –working_directory %D \
–callback %L –set_pw %P –verbosity %V
Version 5.0 TotalView Users Guide 69

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Disabling Autolaunch

If after changing the autolaunch options, TotalView still cannot automati-
cally start tvdsvr, you must disable the autolaunch and start tvdsvr manu-
ally. Here are three ways for doing this:

g Deselect the Enable Single Debug Server Launch check box in the
Launch Strings Page of the File > Preferences dialog box.

g When you debug the remote process, as described in “Starting the Total-
View Debugger Server” on page 61, enter a host name and port number in
the bottom section of the File > New Program dialog box. This disables
autolaunch for the current connection.

g Set a preference that disables autolaunch. For more information, refer to
the online help. Note that setting this preference disables autolaunch
for all TotalView sessions.

NOTE If you disable the autolaunch feature, you must start tvdsvr before
you load a remote executable or attach to a remote process.

Changing the Remote Shell Command

Some environments require that you create your own autolaunch com-
mand. You might do this, for example, if your remote shell command does
not provide the security required by your site and you need to invoke
remote processes by using a more secure command.

If you create your own autolaunch command, you must invoke tvdsvr by
using the –callback and –set_pw arguments.

If you are not sure whether rsh (or remsh on HP machines) works at your
site, try typing “rsh hostname” (or “remsh hostname”) from an xterm, where
hostname is the name of the host upon which you want to invoke the remote
process. If this command prompts you for a password, you must add the
host name of the host machine to your .rhosts file on the target machine.

For example, you could use a combination of the echo and telnet com-
mands:

echo %D %L %P %V; telnet %R
70 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Once telnet establishes a connection to the remote host, you could use
the cd and tvdsvr commands directly, using the values of %D, %L, %P, and
%V that were displayed by the echo command. For example:

cd directory
tvdsvr –callback hostname:portnumber –set_pw password

If your machine does not have a command for invoking a remote process,
you cannot use the autolaunch feature and should disable it.

For information on the rsh and remsh commands, refer to the manual page
supplied with your operating system.

Changing the Arguments

You can also change the command-line arguments passed to rsh (or what-
ever command you use to invoke the remote process).

For example, if the host machine does not mount the same file systems as
your target machine, the debugger server may need to use a different path
to access the executable being debugged. If this is the case, you could
change %D to the directory used on the target machine.

If the remote executable reads from standard input, you cannot use the –n
option with your remote shell command because this option causes the
remote executable to receive an EOF immediately on standard input. If you
omit –n, the remote executable reads standard input from the xterm in
which you started TotalView. This means that you should invoke tvdsvr
from another xterm window if your remote program reads from standard
input. Here’s an example:

%C %R "-working_directory %D –display hostname:0 –e tvdsvr \
–callback %L –set_pw %P –verbosity %V"

Now, each time TotalView launches tvdsvr, a new xterm appears on your
screen to handle standard input and output for the remote program.

Autolaunch Sequence

If you want to know more about autolaunch, here is the sequence of
actions carried out by you, TotalView, and tvdsvr:
Version 5.0 TotalView Users Guide 71

4
Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
1 With the File > New Program command, you specify the host name of
the machine on which you want to debug a remote process, as
described in “Starting the TotalView Debugger Server” on page 61.

2 TotalView begins listening for incoming connections.

3 TotalView launches the tvdsvr process with the server launch com-
mand. (“Single Process Server Launch Command” on page 66 describes
this command.)

4 The tvdsvr process starts on the remote machine.

5 The tvdsvr process establishes a connection with TotalView.

Figure 47 summarizes these actions.

Debugging Over a Serial Line

TotalView allows you to debug programs over a serial line as well as TCP/IP
sockets. However, if a network connection exists, you will probably want to
use it because performance will be much better.

You will need to have two connections to the target machine. One connec-
tion is for the console and the other is for TotalView’s use. Do not try to
use one serial line. TotalView cannot share a serial line with the console.

FIGURE 47: Root Window Showing Process and Thread Status

Network

2

5

3

4
tvdsvr

TotalView

Remote
Executable

Listens
Invokes commands
tvdsvr starts
Makes connection
72 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
Figure 48 illustrates a TotalView debugging session using a serial line. In
this example, TotalView is communicating over a dedicated serial line with
a TotalView Debugger Server running on the target host. A VT100 terminal
is connected to the target host’s console line, allowing you to type com-
mands on the target host.

Start the TotalView Debugger Server

To start a TotalView debugging session over a serial line from the command
line, you must first start the TotalView Debugger Server (tvdsvr).

Using the console connected to the target machine, start tvdsvr and enter
the name of the serial port device on the target machine. Here is the syn-
tax of the command you would use:

tvdsvr –serial device[:baud=num]

where:

device The name of the serial line device.

num The serial line’s baud rate; if you omit the baud rate,
TotalView uses a default value of 38400

For example:

tvdsvr –serial /dev/com1:baud=38400

After it starts, the TotalView Debugger Server will wait for TotalView to
establish a connection.

FIGURE 48: TotalView Debugging Session Over a Serial Line

Network

TotalView

tvdsvr

VT100
Remote

ExecutableConsole
Line

Serial Line
Version 5.0 TotalView Users Guide 73

4
Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
Starting TotalView on a Serial Line

Start TotalView on the host machine and include the name of the serial line
device. The syntax of this command is:

totalview –serial device[:baud=num] filename

where:

device The name of the serial line device on the host ma-
chine.

num The serial line’s baud rate. If you omit the baud rate,
TotalView uses a default value of 38400.

filename The name of the executable file.

For example:

totalview –serial /dev/term/a test_pthreads

New Program Window

Here is the procedure for starting a TotalView debugging session over a
serial line when you are already in TotalView:

1 Start the TotalView Debugger Server. (This is discussed in “Start the
TotalView Debugger Server” on page 73).

2 Select the File > New Program command. TotalView responds by dis-
playing the dialog box shown in Figure 49.

Type the name of the executable file in the Executable field.

Type the name of the serial line device in the Serial Line field.

3 Select OK.
74 TotalView Users Guide Version 5.0

Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
FIGURE 49: File > New Program Dialog Box
Version 5.0 TotalView Users Guide 75

4
Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
76 TotalView Users Guide Version 5.0

Version 5.0
Chapter 5
Setting Up Parallel Debugging
Sessions
This chapter explains how to set up TotalView parallel debugging sessions for
applications that use the following parallel execution models. The topics dis-
cussed are:

g MPI (and MPICH)
g OpenMP
g ORNL PVM and Compaq DPVM
g SGI “shared memory” (shmem)
g Portland Group HPF

NOTE TotalView lets you decide which process you want it to attach. You will find
information in “Attaching to Processes” on page 117.

Debugging MPI Applications Overview

You can use TotalView to debug your Message Passing Interface (MPI) pro-
grams. With TotalView, you can:

g Automatically acquire processes at startup.

g Attach to a parallel program and automatically acquire the parallel pro-
cesses.

g Display the message queue state of a process.

Automatic process acquisition at startup is supported for the following MPI
implementations:

g MPICH version 1.1.0 or later running on any platform that is supported
by both TotalView and MPICH (see “Debugging MPICH Applications” on
page 78). (You are strongly urged to use a later version of MPICH. Infor-
TotalView Users Guide 77

5
Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
mation on versions that work with TotalView can be found in the
TOTALVIEW PLATFORMS document.)

g Compaq MPI (DMPI) running on Compaq Alpha (see “Debugging Compaq
MPI Applications” on page 82).

g HP MPI running on HP PA-RISC 1.1 or 2.0 processors (see “Debugging HP
MPI Applications” on page 83).

g IBM MPI Parallel Environment (PE) running on AIX on RS/6000 and SP
(see “Debugging IBM MPI (PE) Applications” on page 84).

g SGI MPI running on IRIX on MIPS processors (see “Debugging SGI MPI Ap-
plications” on page 89).

g QSW RMS running on Compaq AlphaServer SC systems (see “Debugging
QSW RMS Applications” on page 88).

For more information on message queue display, see “Displaying the Message
Queue Graph” on page 90.

For tips on debugging parallel applications, see “Parallel Debugging Tips” on
page 117.

Debugging MPICH Applications

To debug Message Passing Interface/Chameleon Standard (MPICH) applica-
tions, you must use MPICH version 1.1.0 or later on a homogenous collec-
tion of machines. If you need a copy of MPICH, you can obtain it at no cost
from Argonne National Laboratory at www.mcs.anl.gov/mpi. (You are
strongly urged to use a later version of MPICH. Information on versions
that work with TotalView can be found in the TOTALVIEW PLATFORMS docu-
ment.)

The MPICH library should use the ch_p4, ch_shmem, ch_lfshmem, or
ch_mpl devices. For networks of workstations, ch_p4 is the normal default.
For shared-memory SMP machines, use ch_shmem. On an IBM SP ma-
chine, use the ch_mpl device. The MPICH source distribution includes all
of these devices and you can choose one when you configure and build
MPICH.
78 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
NOTE When configuring MPICH, you must ensure that the MPICH library maintains
all of the information required by TotalView. Use the –debug option with the MPICH
configure command. In addition, the TotalView Release Notes contains information
on patching your MPICH 1.1.0 distribution.

Starting TotalView on an MPICH Job

Before you can an MPICH job under TotalView’s control, you must have
both TotalView and the TotalView server in you path. You can set this up in
your login or shell start-up scripts.

To start a job under TotalView’s control, add the –tv option to the mpirun
command:

mpirun [MPICH-arguments] –tv program [program-arguments]

For example:

mpirun –np 4 –tv sendrecv

The MPICH mpirun command extracts the value of the TOTALVIEW envi-
ronment variable and then uses its value when starting the first process in
the parallel job.

NOTE In other contexts, setting this environment variable means that you can use
a different TotalView or pass command-line options to TotalView.

For example, here is the C shell command that sets the TOTALVIEW envi-
ronment variable so that mpirun will start TotalView using the –no_stop_all
option:

setenv TOTALVIEW "totalview –no_stop_all"

TotalView begins by starting the first process of your job, the master pro-
cess, under its control. You can then set breakpoints, and begin debugging
your code.

On the IBM SP machine, the mpirun command uses the poe command to
start an MPI job. While you still must use the MPICH mpirun (and its -tv op-
tion) command to start an MPICH job, the way you start MPICH differs
since you are using poe. For details of using TotalView with poe, see “Start-
ing TotalView on a PE Job” on page 86.
Version 5.0 TotalView Users Guide 79

5
Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
TotalView will automatically acquire the other processes that make up your
parallel job. A dialog box will appear that asks if you want to stop the
spawned processes. If your answer is Yes, you can stop processes as they
are initialized. This lets you check their states before they run too far.

TotalView automatically copies breakpoints from the master process to the
slave processes as it acquires them. Consequently, you do not have to stop
them just to set these breakpoints. Next, TotalView updates the Root Win-
dow Attached Page to show these newly acquired processes.

Attaching to an MPICH Job

TotalView allows you to attach to an MPICH application even if it was not
started under TotalView’s control. Here is the procedure:

1 Start TotalView in the normal manner.

2 The Root Window Unattached Page displays the processes that are
not yet owned, as shown in the following figure.

3 Attach to the first MPICH process in your workstation cluster by div-
ing into it.

On an IBM SP, attach to the poe process that started your job. For de-
tails, see “Starting TotalView on a PE Job” on page 86.

FIGURE 50: Unattached Page
80 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
Normally, the first MPICH process is the highest process with the correct
image name in the process list. Other instances of the same executable
can be:

The p4 listener processes if you have configured MPICH with ch_p4.

Additional slave processes if you have configured MPICH with
ch_shmem or ch_lfshmem.

Additional slave processes if you have configured MPICH with ch_p4
and have a machine file that places multiple processes on the same
machine.

4 After you attach to the processes, TotalView asks if you also wish to
attach to slave MPICH processes. If you do, press Return or choose
Yes. If you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

In some situations, the processes you expect to see may not exist (for ex-
ample, they may have crashed or exited). TotalView acquires all the pro-
cesses it can and then warns you if it could not attach to some of them. If
you attempt to dive into a process that no longer exists (for example,
through the source or target fields of a message state display), TotalView
tells you that the process no longer exists.

MPICH P4 procgroup Files

If you are using MPICH with a P4 procgroup file (by using the –p4pg op-
tion), make sure you use the same absolute path name in your procgroup
file and on the mpirun command line. If your procgroup file contains a dif-
ferent path name that resolves to the same executable, TotalView treats
each name as a separate executable, which causes debugging problems.

The following example uses the same absolute path name on TotalView’s
command line and in the procgroup file:

% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun –p4pg p4group –tv /users/smith/mympichexe
Version 5.0 TotalView Users Guide 81

5
Setting Up Parallel Debugging Sessions

Debugging Compaq MPI Applications
In this example, TotalView:

1 Reads the symbols from mympichexe only once.

2 Places MPICH processes in the same TotalView share group.

3 Names the processes mypichexe.0, mympichexe.1, mympichexe.2,
and mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a
problem occurred and you should check the contents of your procgroup
file and mpirun command line.

Debugging Compaq MPI Applications

You can debug Compaq MPI applications on the Compaq Alpha platform.
To use TotalView with Compaq MPI, you must use Compaq MPI version 1.7
or later.

Starting TotalView on a Compaq MPI Job

Compaq MPI programs are most often started with the dmpirun com-
mand. You would use very similar command when starting an MPI program
under TotalView’s control:

totalview dmpirun –a dmpirun-command-line

This invokes TotalView and tells it to show you the code for the main pro-
gram in dmpirun. Since you are not usually interested in debugging this
code, you can use the Process > Go command to let the program run.

The dmpirun command runs and starts all of the MPI processes. TotalView
acquires them and then asks if you want to stop them all.

NOTE Problems can occur while rerunning Compaq MPI programs under TotalView
control due to resource allocation issues within Compaq MPI. Consult the Compaq
MPI manuals and release notes for information on using mpiclean to clean up the
MPI system state.
82 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging HP MPI Applications
Attaching to a Compaq MPI Job

To attach to a running Compaq MPI job, attach to the dmpirun process
that started the job. The procedure for attaching to a dmpirun process is
the same as the procedure for attaching to other processes. For details,
see “Attaching to Processes” on page 39.

After TotalView has attached to the dmpirun process, it displays the same
dialog as it does with MPICH. (See step 4 on page 81, included in “Attaching
to an MPICH Job” on page 80.)

Debugging HP MPI Applications

You can debug HP MPI applications on a PA-RISC 1.1 or 2.0 processor. To
use TotalView with HP MPI, you must use HP MPI version 1.6.

Starting TotalView on an HP MPI Job

TotalView lets you start an MPI program in three ways:

totalview program –a mpi-arguments
This command tells TotalView to start the MPI pro-
cess. TotalView will then show you the machine code
for the HP MPI mpirun executable. Since you are not
usually interested in debugging this code, you should
let the program run by using the Process > Go com-
mand.

mpirun mpi-arguments –tv -f startup_file
This third method tells MPI that it should start
TotalView and then start the MPI processes as they
are defined within the startup_file script. This script
names the processes that will be started. Typically,
this file has contents that are similar to:

-h localhost -np 1 sendrecv
-h localhost -np 1 sendrecva

In this example, sendrecv and sendrecva are two dif-
ferent executable programs. (Your HP MPI documenta-
tion describes the contents of this file.)
Version 5.0 TotalView Users Guide 83

5
Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
mpirun mpi-arguments –tv program
This command tells MPI that it should start TotalView.

Just before mpirun starts the MPI processes, TotalView acquires them and
asks if you want to stop the process before it starts executing. If your an-
swer is yes, TotalView halts them before they enter the main program. You
can then enter breakpoints.

Attaching to an HP MPI Job

To attach to a running HP MPI job, attach to the HP MPI mpirun process
that started the job. The procedure for attaching to an mpirun process is
the same as the procedure for attaching to any other process. For details,
see “Attaching to Processes” on page 39.

After TotalView has attached to the HP MPI mpirun process, it displays the
same dialog as it does with MPICH. (See step 4 on page 81 of “Attaching to
an MPICH Job” on page 80.)

Debugging IBM MPI (PE) Applications

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView’s automatic process acquisition capabili-
ties, you must be running release 2.2 or later of the Parallel Environment
for AIX. If you are not running release 2.2, you can run TotalView on release
2.1 if you also load PTF 15.

See “Displaying the Message Queue Graph” on page 90 for message queue dis-
play information.

Preparing to Debug a PE Application

The following sections describe what you must do before TotalView can
display a PE application.
84 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
Switch-Based Communication
If you are using switch-based communications (either “IP over the switch”
or “user space”) on an SP machine, you must configure your PE debugging
session so that TotalView can use “IP over the switch” for communicating
with the TotalView Debugger Server (tvdsvr), by setting adaptor_use to
shared and cpu_use to multiple, as follows:

g If you are using a PE host file, add shared multiple after all host names
or pool IDs in the host file.

g Always use the following arguments on the poe command line:
–adaptor_use shared –cpu_use multiple

If you do not want to set these arguments in the poe command line, set
the following environment variables before starting poe:

setenv MP_ADAPTOR_USE shared
setenv MP_CPU_USE multiple

When using “IP over the switch,” the default is usually shared adapter
use and multiple cpu use; to be safe, set it explicitly by using one of
these techniques.

When you are using switch-based communications, you must run TotalView
on one of the SP or SP2 nodes. Since TotalView uses “IP over the switch” in
this case, you cannot run TotalView on an RS/6000 workstation.

Remote Login
You must be able to perform a remote login using the rsh command. You
will also need to enable remote logins by adding the host name of the re-
mote node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries
to start the TotalView Debugger Server by using the rsh command with the
switch host name of the node.

Timeout
TotalView automatically sets the timeout value to 600 seconds. If you re-
ceive communications timeouts, you can set the value higher. For example:

setenv MP_TIMEOUT 1200

NOTE The timeout value cannot be set using the poe command line.
Version 5.0 TotalView Users Guide 85

5
Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
Starting TotalView on a PE Job

Parallel Environment (PE) programs are run from the command line by us-
ing the following syntax:

program [arguments] [PE_arguments]

They can also be run by using the poe command:

poe program [arguments] [PE_arguments]

However, if you start TotalView on a PE application, you must start the poe
executable as TotalView’s target. The syntax for this is:

totalview poe –a program [arguments] [PE_arguments]

For example:

totalview poe –a sendrecv 500 –rmpool 1

Setting Breakpoints

After TotalView is running, you can start the poe process; this process will
then start the program’s parallel processes. Next, you will need to use the
Process > Go command. TotalView responds by displaying a dialog box
that asks if you want to stop the parallel tasks.

If you want to set breakpoints in your code at this point, answer Yes to
stop the processes. TotalView initially stops the parallel tasks, which also
allows you to set breakpoints. After a Process Window for the first parallel
task appears, you can set breakpoints and control the parallel tasks in the
same way as any process controlled by TotalView.

If you have already set and saved breakpoints in a file and want to reload
the file, answer No. After TotalView loads these breakpoints, the parallel
tasks continue to run.

Starting Parallel Tasks

After you set breakpoints, you can start all of the parallel tasks with the
Process Window’s Group > Go command.

NOTE No parallel tasks will reach the first line of code in your main routine until all
parallel tasks start.
86 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
You should be very cautious in placing breakpoints at or before a line that
calls MPI_Init() or MPL_Init() because timeouts can occur during initializa-
tion. Once you allow the parallel processes to proceed into the MPI_Init()
or MPL_Init() call, you should allow all of the parallel processes to proceed
through it within a short time. For more information on this, see “Avoid un-
wanted timeouts” on page 122.

Attaching to a PE Job

To take full advantage of TotalView’s poe-specific automation, you need to
attach to poe itself, and let TotalView automatically acquire the poe pro-
cesses on its various nodes. This set of acquired processes will include the
processes you want to debug.

Attaching from a Node Running poe
Here’s the procedure for attaching TotalView to poe from the node running
poe.

1 Start TotalView in the directory of the debug target.

If you cannot start TotalView in the debug target directory, you can start
TotalView by editing the TotalView Debugger Server (tvdsvr) command
line before attaching to poe. See “Single Process Server Launch Command”
on page 66.

2 Within the Root Window’s Unattached Page, find the poe process list,
and attach to it by diving into it. When necessary, TotalView launches
TotalView Debugger Servers. TotalView will also update the Root Win-
dow’s Attached Page and open a Process Window for the poe pro-
cess.

3 Locate the process you want to debug and dive on it. TotalView re-
sponds by opening a Process Window for it.

If source code files are available but are not displayed in the Source Pane,
you may have not told TotalView where these files reside. You can fix this by
invoking the File > Search Path command to add directories to your
search path.
Version 5.0 TotalView Users Guide 87

5
Setting Up Parallel Debugging Sessions

Debugging QSW RMS Applications
Attaching from a Node Not Running poe
To attach TotalView to poe from a node not running poe, follow the same
procedures as in attaching from a node running poe, except, since you did
not run TotalView from the node running poe (the start-up node), you will
not be able to see poe on the process list in your Root Window’s Attached
Page and you will not be able to start it by diving into it.

The procedure for placing poe within this list is:

1 Connect TotalView to the start-up node. For details, see “Starting the
TotalView Debugger Server” on page 61 and “Attaching to Processes” on page
39.

2 Select the Root Window’s Unattached Page, and then invoke the
Window > Update command.

3 Look for the process named poe and continue as if attaching from a
node running poe.

Debugging QSW RMS Applications

TotalView supports automatic process acquisition on AlphaServer SC sys-
tems that use Quadrics’ RMS resource management system with the QSW
switch technology.

NOTE Message queue display is only supported if you are running version 1, patch
2 or later of AlphaServer SC.

Starting TotalView on an RMS Job

To start a parallel job under TotalView’s control, use TotalView as though
you were debugging the prun command:

totalview prun –a prun-command-line

TotalView starts up and shows you the machine code for RMS prun. Since
you are not usually interested in debugging this code, use the Process >
Go command to let the program run.

The RMS prun command executes and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
88 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging SGI MPI Applications
do stop them, TotalView halts them before they enter the main program.
You can then enter breakpoints.

Attaching to an RMS Job

To attach to a running RMS job, attach to the RMS prun process that
started the job.

You attach to the prun processes the same way you attach to other pro-
cesses. For details on attaching to processes, see “Attaching to Processes” on
page 39.

Once you have attached to the RMS prun process, TotalView displays the
dialog as it does with MPICH. (See step 4. on page 81 of “Attaching to an
MPICH Job” on page 80.)

Debugging SGI MPI Applications

TotalView can acquire processes started by SGI MPI version 3.1, which is
part of the Message Passing Toolkit (MPT) 1.2 package.

Message queue display is supported by release 1.3 of the Message Passing
Toolkit. See “Displaying the Message Queue Graph” on page 90 for message
queue display.

Starting TotalView on a SGI MPI Job

SGI MPI programs are normally started with the mpirun command. You
would use a similar command to start an MPI program under TotalView’s
control:

totalview mpirun –a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for SGI
MPI mpirun. Since you are not usually interested in debugging this code,
use the Process > Go command to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
Version 5.0 TotalView Users Guide 89

5
Setting Up Parallel Debugging Sessions

Displaying the Message Queue Graph
answer yes, TotalView halts them before they enter the main program. You
can then enter breakpoints.

If you set a verbosity level that allows informational messages, TotalView
also prints a message showing the name of the array and the value of the
array services handle (ash) to which it is attaching.

Attaching to an SGI MPI Job

To attach to a running SGI MPI job, attach to the SGI MPI mpirun process
that started the job. The procedure for attaching to an mpirun process is
the same as the procedure for attaching to any other process. For details,
see “Attaching to Processes” on page 39.

Once you have attached to the SGI MPI mpirun process, TotalView displays
the same dialog as it does with MPICH. (See step 4 on page 81 of “Attaching
to an MPICH Job” on page 80.)

Displaying the Message Queue Graph

TotalView can graphically display your MPI program’s message queue state.
If you select the Process Window’s Tools > Message Queue Graph com-
mand, TotalView displays a window with a large empty area. After you se-
lect the ranks to be monitored, the kind of messages, and message states,
TotalView updates this window to show the current queue state. See
Figure 51 on page 91 for a sample window.

The numbers within the boxes indicate a process’s rank. Diving on a box
tells TotalView that it should open a Process Window for that process.

The numbers next to the arrows indicate the number of messages when
TotalView created the graph. Diving on the arrow tells TotalView that it
should display its Tools > Message Queue Window, which will have de-
tailed information about the messages.

This graph shows you the state of your program at a particular instant. Se-
lecting the Display button tells TotalView that it should update the display.

While you can use this window in many ways, here are some to consider:
90 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Displaying the Message Queue Graph
g Pending messages often indicate that a process cannot keep up with the
amount of work it is expected to perform. These messages indicate
places where you may be able to improve your program’s efficiency.

g Unexpected messages can indicate that something is wrong with your
program because the receiving process does not know how to process
the message.

g After a while, the shape of the graph tends to tell you something about
how your program is executing. If something does not look right, you
might want to determine why it looks different.

FIGURE 51: Tools > Message Queue Graph Window
Version 5.0 TotalView Users Guide 91

5
Setting Up Parallel Debugging Sessions

Displaying the Message Queue
g You can change the shape of the graph by dragging either nodes or the
arrows. This is often useful when you are comparing sets of nodes and
their messages with one another. TotalView does not remember the
places to which you have dragged the nodes and arrows. This means
that if you select the Display button after you arrange the graph, your
changes are lost.

Displaying the Message Queue

The Tools > Message Queue dialog box displays the your MPI program’s
message queue state. This can be useful when you need to find the cause
of a deadlock.

To use the message queue display feature, you must be using one of the
following versions of MPI:

g MPICH version 1.1.0 or later.

g Compaq Alpha MPI (DMPI) version 1.7.

g HP HP-UX version 1.6.

g IBM MPI Parallel Environment (PE) version 2.3 or 2.4; but only for pro-
grams using the threaded IBM MPI libraries. MQD is not available with
earlier releases, or with the non-thread-safe version of the IBM MPI li-
brary. Therefore, to use TotalView MQD with IBM MPI applications, you
must compile and link your code using the mpcc_r, mpxlf_r, or
mpxlf90_r compilers.

g For the SGI MPI TotalView message queue display, you must obtain the
Message Passing Toolkit (MPT) release 1.3 or later. Check with SGI for
availability.

Message Queue Display Overview

After an MPI process returns from the call to MPI_Init(), you can display
the internal state of the MPI library by selecting the Tools > Message
Queue command. The information is shown in Figure 52.

This page displays the state of the process’s MPI communicators. In some
MPI implementations such as MPICH, user-visible communicators are im-
plemented as two internal communicator structures, one for point-to-
point and the other for collective operations. TotalView displays both.
92 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Displaying the Message Queue
NOTE You cannot edit any of the fields in the Message Queue Window.

The contents of the Message Queue dialog box are only valid when a pro-
cess is stopped. (See Figure 52.)

Message Operations

For each communicator, TotalView displays a list of pending receive opera-
tions, pending unexpected messages, and pending send operations. Each
operation has an index value displayed in brackets ([n]). The online help for
this window contains a description of the fields that can be displayed.

MPI Process Diving
To display more detail, you can dive into certain fields in the Message
Queue dialog box. When you dive into a process field, TotalView does one
of the following:

g Raises its Process Window if it exists.

g Sets the focus to an existing Process Window on the requested process.

g If a Process Window does not exist, creates a new one for the process.

FIGURE 52: Message Queue Window
Version 5.0 TotalView Users Guide 93

5
Setting Up Parallel Debugging Sessions

Displaying the Message Queue
MPI Buffer Diving
When you dive into the buffer fields, TotalView opens a Variable Window. It
also guesses what the correct format for the data should be based on the
buffer’s length and the data’s alignment. If TotalView guesses incorrectly,
you can edit the type field in the Variable Window.

NOTE TotalView does not set the buffer type using the MPI data type.

Pending Receive Operations
TotalView displays each pending receive operation in the Pending receives
list. The following figure shows an example of an MPICH pending receive
operation.

NOTE TotalView displays all of the receive operations that are maintained by the
IBM MPI library. You should set the environment variable MP_EUIDEVELOP to the
value DEBUG if you want blocking operations to be visible; otherwise, only non-
blocking operations are maintained. For more details on the MP_EUIDEVELOP envi-
ronment variable, consult the IBM Parallel Environment Operations and Use manual.

Unexpected Messages
The Unexpected messages portion of the Message Queue Window shows
information for retrieved and enqueued messages which are not yet
matched with a receive operation.

FIGURE 53: Message Queue Window Showing Pending Receive Operation

 Operation index
One receive operation

 Diving here displays a Process Window
Diving here displays a Variable Window
94 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Displaying the Message Queue
Some MPI libraries such as MPICH 1.1.1 only retrieve already received mes-
sages as a side effect of calls to functions such as MPI_Recv() or
MPI_Iprobe(). (In other words, while some versions of MPI may know about
the message, the message may not yet be in a queue.) This means that
TotalView cannot list a message until after the destination process makes a
call that retrieves it.

Pending Send Operations
TotalView displays each pending send operations in the Pending sends list.

MPICH does not normally keep information about pending send opera-
tions. However, when you configure MPICH, you can tell it to maintain a list
of them. Start your program under TotalView’s control and use mpirun’s –
ksq, or –KeepSendQueue if MPICH to see this kept.

Depending on the device for which MPICH was configured, blocking send
operations may or may not be visible. However, if they are not displayed,
you can see that these operations occurred because the call is in the stack
backtrace.

If you attach to an MPI program that is not maintaining send queue infor-
mation, TotalView displays the following message:

Pending sends : no information available

MPI Debugging Troubleshooting

If you cannot successfully start TotalView on MPI programs, check the fol-
lowing:

g Can you successfully start MPICH programs without TotalView? The
MPICH code contains some useful scripts that let you verify that you can
start remote processes on all of the machines in your machines file. (See
tstmachines in mpich/util.)

g You will not get a message queue display if you get the following warning:

The symbols and types in the MPICH library used by TotalView to
extract the message queues are not as expected in the image
<<your image name>>. This is probably an MPICH version or
configuration problem.
Version 5.0 TotalView Users Guide 95

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
You need to check that you are using MPICH 1.1.0 or later and that you
have configured it with the –debug option. (You can check this by look-
ing in the config.status file at the root of the MPICH directory tree).

g Does the TotalView Debugger Server (tvdsvr) fail to start? tvdsvr must be
on your PATH when you log in. Remember that rsh is being used to start
the server, and it does not pass your current environment to the process
you started remotely.

g Make sure you have the correct MPI version and have applied any re-
quired patches. See the TOTALVIEW RELEASE NOTES for up-to-date infor-
mation.

g Under some circumstances, MPICH kills TotalView with the SIGINT sig-
nal. You can see this behavior when restarting an MPICH job using the
Group > Delete command. If TotalView exits and is terminated abnor-
mally with a Killed message, try setting the TotalView –ignore_control_c
command-line option. For example:

setenv TOTALVIEW "totalview –ignore_control_c"
mpirun –tv /users/smith/mympichexe

Debugging OpenMP Applications

TotalView provides explicit support for many OpenMP C and Fortran com-
pilers. The compilers and architectures that we support are listed in the
TOTALVIEW PLATFORMS document and our Web site.

Here are some of the features that TotalView supports:

g Source-level debugging of the original OpenMP code.

g The ability to plant breakpoints throughout the OpenMP code, including
lines that are executed in parallel.

g Visibility of OpenMP worker threads.

g Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.

g A stack-back link token in worker threads’ stacks so that you can find
their master stack.

g Access to OMP THREADPRIVATE data in code compiled by the IBM and
Compaq compilers.

The code examples used in this section are included in the TotalView distri-
bution in the examples/omp_simple_f file.
96 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
NOTE On the SGI IRIX platform, you must use the MIPSpro 7.3 compiler or later to
debug OpenMP.

Debugging an OpenMP Program

Debugging OpenMP code is very similar to debugging multithreaded code,
differing only in that the OpenMP compiler makes the following special
code transformations:

g The most visible transformation is outlining. The compiler pulls the body
of a parallel region out of the original routine and places it into an out-
lined routine. In some cases, the compiler will generate multiple outlined
routines from a single parallel region. This allows multiple threads to ex-
ecute the parallel region.

The outlined routine’s name is based on the original routine’s name.

g The compiler inserts calls to the OpenMP runtime library.

g The compiler splits variables between the original routine and the out-
lined routine. Normally, shared variables are maintained in the master
thread’s original routine, and private variables are maintained in the out-
lined routine.

g The master thread creates threads to share the workload. As the master
thread begins to execute a parallel region in the OpenMP code, it cre-
ates the worker threads, dispatches them to the outlined routine, and
then calls the outlined routine itself.

TotalView makes these transformations visible in the debugging session.
Here are some things you should know:

g The compiler may generate multiple outlined routines from a single par-
allel region. This means that a single line of source code can generate
multiple blocks of machine code inside different functions.

If you set a breakpoint on a source line that results in multiple outlined
routines, TotalView displays its Ambiguous Line dialog box that lets you
to select the function name. In most cases, you will select the All button
to operate on all instances of the outlined functions.

g You cannot single step into or out of a parallel region. Instead, set a
breakpoint inside the parallel region and allow the process to run to it.
Once inside a parallel region, you can single step within it.

g OpenMP programs are multithreaded programs, so the rules for debug-
ging multithreaded programs apply.
Version 5.0 TotalView Users Guide 97

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
Figure 54 shows a sample OpenMP debugging session.

The following list contains information on platform differences:

g On Compaq Tru64 UNIX, the OpenMP threads are implemented by the
compiler as pthreads, and on SGI IRIX as sprocs. TotalView shows the
threads’ logical and/or system thread ID, not the OpenMP thread num-
ber.

g The OpenMP master thread has logical thread ID number 1. The
OpenMP worker threads have a logical thread ID number greater than 1.

g In Compaq Tru64 UNIX, the system manager threads have a negative
thread ID; as they do not take part in your OpenMP program, you should
never touch them.

g SGI OpenMP uses the SIGTERM signal to terminate threads. Because
TotalView stops a process when the process receives a SIGTERM, the
OpenMP process does not terminate. If you want the OpenMP process
to terminate instead of stop, set the default action for the SIGTERM sig-
nal to Resend.

g When the OpenMP master thread is stopped in a PARALLEL DO outlined
routine, the stack backtrace shows the following call sequence:

The outlined routine called from.

The OpenMP runtime library called from.

The original routine (containing the parallel region).

g When the OpenMP worker threads are stopped in a PARALLEL DO out-
lined routine, the stack backtrace shows the following call sequence:

Outlined routine called from the special stack parent token line.

The OpenMP runtime library called from.

g Select or dive on the stack parent token line to view the original rou-
tine’s stack frame in the OpenMP master thread.

OpenMP Private and Shared Variables

TotalView allows you to view both OpenMP private and shared variables.

OpenMP private variables are maintained in the outlined routine, and are
stored by the compiler like local variables. See “Displaying Local Variables and
Registers” on page 153. However, OpenMP shared variables are maintained
in the master thread’s original routine stack frame.
98 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
FIGURE 54: Sample OpenMP Debugging Session

 OpenMP master thread “Original” routine name
OpenMP worker threads Stack parent token. Select

 Manager threads or dive to view master
(do not touch) “Outlined” routine name
Ma te th ead indo Wo ke th ead p o e

 OpenMP master thread “Original” routine name
OpenMP worker threads Stack parent token. Select or

 Manager threads dive to view master
(do not touch) “Outlined” routine name
Master thread window Worker thread process
Version 5.0 TotalView Users Guide 99

1

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
TotalView allows you to display shared variables through a Process Window
focused on the OpenMP master thread or through one of the OpenMP
worker threads.

Here is how you display an OpenMP shared variable:

1 Select the outlined routine in the Stack Trace Pane; or select the
original routine stack frame in the OpenMP master thread.

2 Dive on the variable name, or select the View > Lookup Variable
command. When prompted, enter the variable name.

TotalView will open a Variable Window displaying the value of the
OpenMP shared variable, as shown in Figure 55.

Shared variables are stored on the OpenMP master thread’s stack. When
displaying shared variables in OpenMP worker threads, TotalView uses the
stack context of the OpenMP master thread to find the shared variable.
TotalView uses the OpenMP master thread’s context in the resulting Vari-
able Window to display the shared variable.

FIGURE 55: OpenMP Shared Variable

 OpenMP shared variables have master thread’s
context
Original routine’s stack frame selected

 Stack Frame Pane includes shared variables
00 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
You can also view OpenMP shared variables in the Stack Frame Pane by se-
lecting the original routine stack frame in the OpenMP master thread, or by
selecting the stack parent token line in the Stack Trace Pane of OpenMP
worker threads, as shown in Figure 55.

OpenMP THREADPRIVATE Common Blocks

The Compaq Tru64 UNIX OpenMP and SGI IRIX compilers implement
OpenMP THREADPRIVATE common blocks by using the thread local stor-
age system facility. This facility stores a variable declared in OpenMP
THREADPRIVATE common blocks at different memory locations for each
thread in an OpenMP process. This allows the variable to have different
values in each thread.

Here’s how you can view a variable in an OpenMP THREADPRIVATE com-
mon block, or the OpenMP THREADPRIVATE common block itself:

1 In the Threads Pane of the Process Window, select the thread con-
taining the private copy of the variable or common block you would
like to view.

2 In the Stack Trace Pane of the Process Window, select the stack
frame that will allow you to access OpenMP THREADPRIVATE com-
mon block variable. You can select either the outlined routine or the
original routine for an OpenMP master thread. You must, however,
select the outlined routine for an OpenMP worker thread.

3 From the Process Window, dive on the variable name or common
block name. Or, select the View > Lookup Variable command. When
prompted, enter the name of the variable or common block. You may
need to append an underscore (_) after the common block name.

TotalView opens a Variable Window displaying the value of the variable or
common block for the selected thread.

See “Displaying Variable Windows” on page 153 for more information on
displaying variables.

4 To view OpenMP THREADPRIVATE common blocks or variables
across all threads, you can use the Variable Window’s View >
Laminate Threads command. See “Displaying a Variable in All Processes or
Threads” on page 196.
Version 5.0 TotalView Users Guide 101

1

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
Figure 56 shows Variable Windows displaying an OpenMP THREADPRIVATE
common blocks. Because the Variable Window has the same thread con-
text as the Process Window from which it was created, the title bar patterns
for the same thread match. In the laminated views, the values of the com-
mon block across all threads are displayed.

OpenMP Stack Parent Token Line

TotalView inserts a special stack parent token line in the Stack Trace Pane
of OpenMP worker threads when they are stopped in an outlined routine.

When you select or dive on the stack parent token line, the Process Win-
dow switches to the OpenMP master thread, allowing you to see the stack
context of the OpenMP worker thread’s routine. This context includes the
OpenMP shared variables. (See Figure 57.)

FIGURE 56: OpenMP THREADPRIVATE Common Block Variables
02 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
Debugging PVM and DPVM Applications

You can debug applications that use the Parallel Virtual Machine (PVM) li-
brary or the Compaq Tru64 UNIX Parallel Virtual Machine (DPVM) library
with TotalView on some platforms. TotalView supports ORNL PVM 3.4.1 on
the Compaq Alpha, Hewlett-Packard, Sun 5, RS/6000, and SGI IRIX plat-
forms and DPVM 1.4 or later on the Compaq Alpha platform.

NOTE See the TotalView Platforms document for the most up-to-date information
regarding your PVM or DPVM software.

For tips on debugging parallel applications, see “Parallel Debugging Tips” on
page 117.

Supporting Multiple Sessions

When you debug a PVM or DPVM application, TotalView becomes a PVM
tasker. This lets it establish a debugging context for your session. You can
run:

g One TotalView PVM or DPVM debugging session for a user and for an ar-
chitecture; that is, different users cannot interfere with each other on
the same machine or same machine architecture.

One user can start TotalView to debug the same PVM or DPVM applica-
tion on different machine architectures. However, a single user cannot
have multiple instances of TotalView debugging the same PVM or DPVM
session on a single machine architecture.

For example, suppose you start a PVM session on Sun 5 and Compaq Al-
pha machines. You must start two TotalView sessions: one on the Sun 5
machine to debug the Sun 5 portion of the PVM session, and one on the
Compaq Alpha machine to debug the Compaq Alpha portion of the PVM

FIGURE 57: OpenMP Stack Parent Token Line
Version 5.0 TotalView Users Guide 103

1

5
Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
session. These two TotalView sessions are separate and do not interfere
with one another.

g Similarly, in one TotalView session, you can run either a PVM application
or a DPVM application, but not both. However, if you run TotalView on a
Compaq Alpha, you can have two TotalView sessions: one debugging
PVM and one debugging DPVM.

Setting Up ORNL PVM Debugging

To enable PVM, create a symbolic link from the PVM bin directory (which is
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr) to the TotalView Debugger Server
(tvdsvr). With this link in place, TotalView can use the pvm_spawn() call to
spawn the tvdsvr tasks.

For example, if tvdsvr is installed in the /opt/totalview/bin directory, enter
the following command:

ln -s /opt/totalview/bin/tvdsvr \
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link does not exist, TotalView cannot spawn tvdsvr. If this
happens, TotalView displays the following error:

Error spawning TotalView Debugger Server: No such file

Starting an ORNL PVM Session

Start the ORNL PVM daemon process before you start TotalView. See the
ORNL PVM documentation for information about the PVM daemon process
and console program.

1 Use the pvm command to start a PVM console session—this com-
mand starts the PVM daemon. If PVM is not running when you start
TotalView (with PVM support enabled), TotalView exits with the follow-
ing message:

Fatal error: Error enrolling as PVM task: pvm error
2 If your application uses groups, start the pvmgs process before start-

ing TotalView. PVM groups are unrelated to TotalView process groups.
For information about TotalView process groups, refer to “Examining
Groups” on page 135.
04 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
3 Enable PVM support in TotalView using an X resource; see
totalview*pvmDebugging on page 281. You need to restart TotalView
after setting this new resource. For more information, refer to “X Re-
sources” on page 275.

As an alternative, you can use command-line options to the totalview
command. For example:

–pvm which enables PVM support
–no_pvm which disables PVM support

The command-line options override the X resource. For more informa-
tion on, refer to “TotalView Command Syntax” on page 289.

4 Set the TotalView directory search path to include the PVM directo-
ries. This directory list must include those needed to find both exe-
cutable and source files. The directories you use will vary, but should
always contain the current directory and your home directory.

You can set the directory search path by using an X resource or the
File > Search Directory command. Refer to totalview*searchPath on
page 281 and “Setting Search Paths” on page 48 for more information.

For example, to debug the PVM examples, you can place the following
directories in your search path:

$HOME
$PVM_ROOT/xep
$PVM_ROOT/xep/$PVM_ARCH
$PVM_ROOT/src
$PVM_ROOT/src/$PVM_ARCH
$PVM_ROOT/bin/$PVM_ARCH
$PVM_ROOT/examples
$PVM_ROOT/examples/$PVM_ARCH
$PVM_ROOT/gexamples
$PVM_ROOT/gexamples/$PVM_ARCH

5 Verify that the action taken by TotalView for the SIGTERM signal is ap-
propriate. (You can examine the current action by using the Process
Window’s File > Signals command. Refer to “Handling Signals” on page
45 for more information.)

PVM uses the SIGTERM signal to terminate processes. Because
TotalView stops a process when the process receives a SIGTERM, the
OpenMP process is not terminated. If you want the PVM process to ter-
minate, set the action for the SIGTERM signal to Resend.

Continue with “Automatically Acquiring PVM/DPVM Processes” on page 107.
Version 5.0 TotalView Users Guide 105

1

5
Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
Starting a DPVM Session

DPVM requires no additional user configuration. However, you must start
the DPVM daemon before you start TotalView. See the DPVM documenta-
tion for information about the DPVM daemon and console program.

1 Use the dpvm command to start a DPVM console session; starting
the session also starts the DPVM daemon. If DPVM is not running
when you start TotalView (with DPVM support enabled), TotalView ex-
its with the following message:
Fatal error: Error enrolling as DPVM task: dpvm error

2 You can enable Enable DPVM support in two ways. The first uses an X
resource; see totalview*DPVMDebugging on page 277. You will need
to restart TotalView after setting (or resetting) an X resource.

As an alternative, you can use command-line options to the totalview
command. For example:

–dpvm which enables DPVM support.
–no_dpvm which disables DPVM support

The command-line options override the X resource. For more informa-
tion on the totalview command, refer to “TotalView Command Syntax” on
page 289.

3 Verify that the default action taken by TotalView for the SIGTERM sig-
nal is appropriate. You can examine the default actions with the Pro-
cess Window’s File > Signals command in TotalView. Refer to “Handling
Signals” on page 45 for more information.

DPVM uses the SIGTERM signal to terminate processes. Because
TotalView stops a process when the process receives a SIGTERM, the
OpenMP process is not terminated. If you want the DPVM process to ter-
minate, set the action for the SIGTERM signal to Resend.

If you enable PVM support using X resources, and you wish to use DPVM,
you must use both –no_pvm and –dpvm command-line options when you
start TotalView. Similarly, when enabling DPVM support using an X resource,
you can use the –no_dpvm and –pvm command-line options to debug
PVM.

NOTE Do not use X resources to start both PVM and DPVM.
06 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
Automatically Acquiring PVM/DPVM Processes

This section describes how TotalView automatically acquires PVM and
DPVM processes in a PVM or DPVM debugging session. Specifically,
TotalView uses the PVM tasker to intercept pvm_spawn() calls.

When you start TotalView as part of a PVM or DPVM debugging session, it
takes the following actions:

g TotalView checks to make sure there are no other PVM or DPVM taskers
running. If TotalView finds a tasker on any host that it is debugging, it
displays the following message and then exits:

Fatal error: A PVM tasker is already running on host 'host'

g TotalView finds all the hosts in the PVM or DPVM configuration. Using
the pvm_spawn() call, TotalView starts a TotalView Debugger Server
(tvdsvr) on each remote host that has the same architecture type as the
host on which TotalView is running. It tells you it has started a debugger
server by printing:

Spawning TotalView Debugger Server onto PVM host 'host'

If you add a host with a compatible machine architecture to your PVM or
DPVM debugging session after you start TotalView, TotalView automatically
starts a debugger server on that host.

After all debugger servers are running, TotalView will intercept every PVM or
DPVM task created with the pvm_spawn() call on hosts that are part of the
debugging session. If a PVM or DPVM task is created on a host with a differ-
ent machine architecture, TotalView ignores that task.

When TotalView receives a PVM or DPVM tasker event, it takes the following
actions:

1 TotalView reads the symbol table of the spawned executable.

2 If a saved breakpoints file for the executable exists and you have en-
abled automatic loading of breakpoints, TotalView loads breakpoints
for the process.

3 TotalView asks if you want to stop the process before it enters the
main() routine.

If you answer Yes, TotalView stops the process before it enters main()
(that is, before it executes any user code). This allows you to set break-
Version 5.0 TotalView Users Guide 107

1

5
Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
points in the spawned process before any user code executes. On most
machines, TotalView stops a process in the start() routine of the crt0.o
module if it is statically linked. If the process is dynamically linked, the
debugger stops it just after it finishes running the dynamic linker. Be-
cause the Process Window displays assembler instructions, you will need
to use the View > Lookup Function command to display the source
code for the main() routine. For more information on this command, re-
fer to “Finding the Source Code for Functions” on page 127.

Attaching to PVM/DPVM Tasks

You can attach to a PVM or DPVM task if the task meets the following crite-
ria:

g The machine architecture on which the task is running is the same as the
machine architecture on which TotalView is running.

g The task must be created. (This is indicated when flag 4 is set in the PVM
Tasks and Configuration Window.)

g The task must not be a PVM tasker. If flag 400 is clear in the PVM Tasks
and Configuration Window, the process is a tasker.

g The executable name must be known. If the executable name is listed as
a dash (–), TotalView cannot determine the name of the executable. (This
can occur if a task was not created with the pvm_spawn() call.)

To attach to a PVM or DPVM task, complete the following steps:

1 Select Tools > PVM Tasks command from the TotalView Root Window.

The PVM Tasks and Configuration Window is displayed, as shown in
Figure 58. This window displays current information about PVM tasks
and hosts—TotalView automatically updates this information as it re-
ceives events from PVM.

Since PVM does not always generate an event that allows TotalView to
update this window, you should use the Windows > Update command
to ensure that you are seeing the most current information.

For example, you can attach to the tasks named xep and mtile in the fol-
lowing figure because flag 4 is set. In contrast, you cannot attach to the
tvdsvr and – (dash) executables because flag 400 is set.

2 Dive on a task entry that meets the criteria for attaching to tasks.
TotalView attaches to the task.
08 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
3 If the task to which you attached has related tasks that can be de-
bugged, TotalView asks if you want to attach to these related tasks. If
you answer Yes, TotalView attaches to them. If you answer No, it only
attaches to the task you dove on.

After attaching to a task, TotalView looks for attached tasks that are related
to the this task; if there are related tasks, TotalView places them in the
same control group. If TotalView is already attached to a task you dove on,
it simply opens and raises the Process Window for the task. (See Figure 58.)

Reserved Message Tags
TotalView uses PVM message tags in the range 0xDEB0 through 0xDEBF to
communicate with PVM daemons and the TotalView Debugger Server. Avoid
sending messages that use these reserved tags.

FIGURE 58: PVM Tasks and Configuration Window

 Task ID (TID) Hosts
Parent TID Daemon TID

 UNIX Process ID (PID) Machine Architecture
Tasks
Version 5.0 TotalView Users Guide 109

1

5
Setting Up Parallel Debugging Sessions

Shared Memory Code
Debugging Dynamic Libraries
If the machines in your PVM debugging session are running different ver-
sions of the same operating system, the dynamic libraries can vary from
machine to machine. If this is the case, you may see strange stack back-
trace results when your program is executing inside a dynamic library. To
eliminate this problem, make sure all of the hosts in your PVM configura-
tion are running the same version of the operating system and have the
same dynamic libraries installed. As an alternative, you can statically link
your programs.

Cleanup of Processes
The pvmgs process registers its task ID in the PVM database. If the pvmgs
process is terminated, the pvm_joingroup() routine hangs because PVM
does not clean up the database. If this happens, you must terminate and
then restart the PVM daemon.

TotalView attempts to clean up the TotalView Debugger Server daemons
(tvdsvr), which also act as taskers. If some of these processes do not termi-
nate, you must manually terminate them.

Shared Memory Code

TotalView supports the SGI IRIX logically shared, distributed memory ac-
cess (SHMEM) library.

To debug a SHMEM program, follow these steps:

1 Link it with the dbfork library. See “Linking with the dbfork Library” on
page 317.

2 Start TotalView on your program. See Chapter 3, “Setting Up a Debugging
Session” on page 33.

3 Set at least one breakpoint after the call to the start_pes() SHMEM
routine. (This is illustrated in Figure 59.)

NOTE You cannot single-step over the call to start_pes().

The call to start_pes() creates new worker processes that return from the
start_pes() call and execute the remainder of your program. The original
10 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc., HPF Applications
process never returns from start_pes(), but instead stays in that routine,
waiting for the worker processes it created to terminate

Debugging Portland Group, Inc., HPF Applications

TotalView lets you debug High Performance Fortran (HPF) code compiled
with the Portland Group, Inc., HPF (PGI HPF) compiler at the source level.

NOTE Debugging PGI HPF programs requires a separate TotalView license.

FIGURE 59: SHMEM Sample Session

 SHMEM starter process
SHMEM worker processes

 Select a worker process in the Root Window
Set breakpoint after the call to start_pes()
Version 5.0 TotalView Users Guide 111

1

5
Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc., HPF Applications
TotalView supports the following platforms:

g IBM RS/6000 and SP AIX 4.x

g SGI MIPS IRIX 6.x, for programs compiled with –64 only

g Sun Sparc SunOS 5 (Solaris 2.x)

See the TOTALVIEW PLATFORMS document for supported PGI HPF runtime
configurations.

In addition to normal TotalView features, the TotalView PGI HPF support al-
lows the following:

g Source-level display of HPF code.

g Source-level breakpoints in HPF code.

g You can update replicated scalar variables in all processes by updating
the value in any process.

g Display of distributed arrays, with optional display of the owning proces-
sor.

g Display of the distribution of distributed arrays, for instance, onto which
node a particular element of a distributed array is mapped.

g Visualization of distributed arrays.

g Automatic update of all copies of replicated scalar variables.

g You can export the distribution of an array to the visualizer to display it
graphically.

g You see the HPF source and variables.

g You can set breakpoints in the HPF source code.

The following restrictions exist:

g You cannot display user-defined data types.

g Evaluation points and expressions are executed locally and cannot refer-
ence distributed arrays. However, you can use the $visualize intrinsic.

If you use the $visualize EVAL intrinsic, remember that EVAL code is ex-
ecuted by every process. Therefore, you probably want to make this a
non-shared action point.

In the address display for Variable Windows showing HPF variables, an ad-
ditional field tells you whether the variable is distributed [Dist] or replicated
[Repl]. If you update a replicated variable, it is updated in all processes. A
distributed variable is only updated in its home process.
12 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc., HPF Applications
You cannot edit the address of a distributed array. If you edit the address of
a replicated scalar, it will be marked as distributed, since it no longer makes
sense to update all of the processes, as you do not know what is at that
address in the other processes.

When you display an HPF distributed array, TotalView can also display the
logical processor on which each element resides. You can change the dis-
play of this additional information for a single Variable Window by using the
View > Node Display command. You can set the default for the TotalView
session by using the –hpf_node or –no_hpf_node command-line options;
you could also use the X resource totalview*hpfNode on page 279. No
matter which way you set the default, you can always toggle the behavior in
each window.

By default, this display is disabled. If it is enabled, TotalView displays a dis-
tributed array as is shown in Figure 60. Otherwise, the Node column is not
displayed and a distributed array display looks the same as that of a nor-
mal array.

Starting TotalView with HPF

Beginning with PGI HPF release 2.4, TotalView can track processes started
by rpm or smp, the default PGI HPF runtime libraries. If you still want to
use MPI, you must ensure that the MPI implementation is supported by PGI
HPF and TotalView. See “Debugging MPI Applications Overview” on page 77.

FIGURE 60: Block Distributed Array on Three Processes
Version 5.0 TotalView Users Guide 113

1

5
Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc., HPF Applications
On IBM SP, or clusters of RS/6000 machines running IBM's parallel environ-
ment, you can use any runtime library started with the poe command.

On SGI IRIX, TotalView supports 64-bit PGI HPF programs only. You must
compile your PGI HPF program with the –64 compiler option.

Dynamically Loaded Library
To debug PGI HPF code, TotalView needs to be able to dynamically load the
file libtvhpf.so, which is distributed as part of the PGI HPF product.

TotalView searches for this file in the following order:

1 TotalView attempts to dynamically load the unadorned file name
libtvhpf.so. This succeeds if libtvhpf.so is in one of the directories on
your dynamic library path environment variable (on Sun Sparc
SunOS5, IBM AIX, and SGI IRIX, this is LD_LIBRARY_PATH if the vari-
able LD_LIBRARYN32_PATH is not set). On SGI IRIX, libtvhpf.so is in
one of the directories on your –n32 dynamic loader path
(LD_LIBRARYN32_PATH).

2 If step 1 fails, TotalView uses the PGI environment variable to find the
Portland Group installation. If the PGI environment variable is not
set, TotalView looks for the default installation directory (/usr/pgi).

3 TotalView then searches the directories in the order shown in the fol-
lowing table.

If TotalView still cannot locate a copy of libtvhpf.so and, if the TotalView
verbosity level is not silent, an error message is displayed telling you that
the library could not be found, and HPF debugging is disabled. TotalView
will then start debugging the generated Fortran code.

TABLE 8: PGI HPF Dynamic Library Search Order

System Search Path
IBM RS/6000 and SP AIX 4.x $PGI/sp2/lib

$PGI/rs6000/lib
Sun Sparc SunOS 5 (Solaris 2.x) $PGI/solaris/lib
SGI MIPS IRIX 6.x $PGI/sgi/lib–n32

$PGI/sgi/lib–64

$PGI/origin/lib/mips4
14 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc., HPF Applications
If TotalView cannot find your copy of libtvhpf.so, you should either move it
to one of the places that will be searched by default, or add its directory to
your LD_LIBRARY_PATH.

Setting Up PGI HPF Compiler Defaults

NOTE With PGI HPF version 2.4 and later, there is no need to use an MPICH-based
runtime, and you can ignore this section.

Set up the HPF compiler with the defaults set for using MPICH, TotalView,
IBM’s parallel environment, and FORTRAN 77, as in the following sections.

If you have PGI HPF release 2.4, the rc files should already have been set
up correctly, but they will use the default runtime, which is not MPI. If you
want to use an MPI runtime, you should consult the PGI HPF manuals.

Setting Up MPICH

You should follow the instructions in the PGI HPF manual and MPICH man-
ual to ensure that you can build an HPF program and run it by using
MPICH. One way to do this is to create your own .pghpfrc file and add
lines similar to the following:

Set up to use my MPI with PGI HPF.
Change the path to libmpi.a as appropriate
#
INCLUDE $DRIVER/.pghpfrc
set HPF_MPI=/where_your_mpi_lives/libmpi.a
set HPF_COMM_LIBS= \

"–lpghpf_mpi$P $HPF_MPI $HPF_SOCKET"

Because these lines tell pghpf to use the MPI communications library, you
do not need to name them on the command line at compilation time.

Setting TotalView Defaults for HPF

To debug HPF code, you will normally set the breakpoint and barrier break-
point behavior so that TotalView does not stop other processes when the
breakpoint is hit. For more information, refer to “Parallel Debugging Tips” on
page 117.
Version 5.0 TotalView Users Guide 115

1

5
Setting Up Parallel Debugging Sessions

Debugging Portland Group, Inc., HPF Applications
Other HPF resources are totalview*hpf on page 278 and
totalview*hpfNode on page 279.

Compiling HPF for Debugging

To compile your HPF program so it can be used with TotalView, you should
use the –g and –Mtotalview options to pghpf when both compiling and
linking. (The –Mtv option is the same as the –Mtotalview option.)

The –g option can produce confusing results when used by itself. For ex-
ample, while you may see the HPF source code, none of the HPF debugging
features work. If TotalView flags your HPF code in the stack backtrace as
being f77, the program was probably not compiled with the –Mtv option.

If you want to debug the Fortran code generated by HPF, you must also use
the –Mkeepftn option. Otherwise, the compiler deletes these intermedi-
ate Fortran files after it compiles the source code.

You can debug at the generated Fortran level by starting TotalView with the
–no_hpf option or setting the X resource totalview*hpf to false. TotalView
will then ignore the .stb and .stx files and show you the generated F77.

There is no need to relink the HPF program to debug at the generated For-
tran level.

Starting HPF Programs

The way in which TotalView starts an HPF parallel program depends on the
machine on which the code is running and the runtime library linked into
the HPF code.

PGI HPF smp and rpm Libraries
Using TotalView to start a program linked with the smp and rpm libraries is
similar to the way in which you would normally start the program. For ex-
ample, suppose you start the program as follows:

my_program –bah –pghpf –np 6

Here is the command you would use to debug this file:

totalview my_program –a –bah –pghpf –np 6
16 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
Starting HPF Programs with MPICH
In a workstation cluster environment using MPICH, debug your HPF appli-
cation with TotalView by adding the –tv option to the mpirun command.
For example, assume that you would begin executing your code with the
following command:

mpirun –np 4 my_program

Using mpirun, you would invoke TotalView as follows:

mpirun –tv –np 4 my_program

Workstation Clusters Using MPICH
Debugging workstation clusters uses the same mechanism as debugging an
MPICH program since a compiled HPF program is an MPICH program. For
more information, refer to “Debugging MPI Applications Overview” on page 77.

IBM Parallel Environment
In the IBM parallel environment on an IBM SP or cluster of RS/6000 ma-
chines, parallel programs are started by using the poe command. Here is
an example of starting TotalView on the poe command to debug a program
named hpf_test:

totalview poe –a hpf_test –procs 6

For more information, refer to “Starting TotalView on a PE Job” on page 86.

Parallel Debugging Tips

Attaching to Processes

In a typical multiprocess job, you are interested in what is occurring in
some of your processes and not as much interested in others. By default,
TotalView tries to attach to all the processes that you program starts. If
there are a lot of processes, there may be considerable overhead involved
in opening and communicating with the jobs. You can minimize this over-
head by using the Group > Attach Subsets command, which displays the
following dialog box.
Version 5.0 TotalView Users Guide 117

1

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
By selecting the boxes at the left of this dialog box, you tell TotalView which
processes it should attach to. Restated, while your program will launch all
of these processes, TotalView will only attach to the processes that you
have selected here.

While you can use this command at any time, you would probably use it im-
mediately before TotalView launches processes. Unless you have set pref-
erences otherwise, TotalView will stop and ask if you want it stop your
processes. (See Figure 62.)

This is a good time to use this command.

FIGURE 61: Group > Attach Subset Dialog Box

FIGURE 62: Stop Before Going Parallel Question Dialog Box
18 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
The commands on the Parallel Page with the File > Preferences dialog box
let you control what TotalView will do when your program goes parallel.
Here is the Parallel page:

The When a job goes parallel or calls exec() radio buttons have the follow-
ing meanings:

g Stop the group: Stop the control group immediately after the processes
are created.

g Run the group: Allows all newly created processes in the control group
to run freely.

g Ask what to do: Asks what should occur. If you select this option,
TotalView will ask if it should start the created processes.

The When a job goes parallel radio buttons have the following meaning:

g Attach to all: TotalView automatically attaches to all processes when
they begin executing.

g Attach to none: TotalView will not attach to any created process when it
begins executing.

FIGURE 63: File > Preferences: Parallel Page
Version 5.0 TotalView Users Guide 119

1

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
g Ask what to do: Asks what should occur. If you select this option,
TotalView opens the same dialog box that is displayed when you select
Group > Attach Subsets. TotalView will then attach to the processes
that you have selected. Note that this dialog box is not displayed when
you set the preference. Instead, it controls what will happen when your
program creates parallel processes.

General Parallel Debugging Tips

Here are some tips that are useful for debugging most parallel programs:

g Breakpoint behavior
When you are debugging message-passing and other multiprocess pro-
grams, it is usually easier to understand the program’s behavior if you
change the default stopping action of breakpoints and barrier break-
points. By default, when one process in a multiprocess program hits a
breakpoint, TotalView will stop all the other processes.

To change the default stopping action of breakpoints and barrier break-
points, you can set TotalView preferences. Information on this prefer-
ences can be found in the online help.

A second method is to specify the –no_stop_all TotalView command-
line options described on page 300 and –no_barr_stop_all described on
page 291.

These settings set breakpoint and barrier breakpoint behavior. These op-
tions tell TotalView if it should allow other processes and threads to con-
tinue to run when a process or thread hits the breakpoint.

These options only affect the default behavior. As usual, you can choose
a behavior for a breakpoint by setting the breakpoint properties in the
File > Preference’s Action Points Pane. See “Breakpoints for Multiple Pro-
cesses” on page 209.

g Process synchronization

TotalView has two features that make it easier to get all of the processes
in a multiprocess program synchronized and executing a line of code.

Process barrier breakpoints and the process hold/release features work
together to help you get control the execution of your processes. See
“Barrier Breakpoints” on page 212.

The Process Window’s Group > Run To command is a special kind of
stepping command. It allows you to run a group of processes to a se-
lected source line or instruction. See “Group-Width Stepping” on page 141.
20 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
g Using group commands

Group commands are often more useful than process commands.

It is often more useful to use the Group > Go command to restart the
whole application instead of the Process > Go command. You would
then use the Group > Halt command instead of Process > Halt.

The group-level single-stepping commands such as Group > Step and
Group > Next allow you to single-step a group of processes in a paral-
lel. See “Group-Width Stepping” on page 141.

g Process-level stepping

If you use a process-level single-stepping command in a multiprocess
program, TotalView may appear to be hung (it continuously displays the
watch cursor). If you single-step a process over a statement that cannot
complete without allowing another process to run and that process is
stopped, the stepping process appears to hang. This can occur, for ex-
ample, when you try to single-step a process over a communication op-
eration that cannot complete without the participation of another
process. When this happens, you can abort the single-step operation by
selecting Cancel in the Waiting for Command to Complete window that
will appear. As an alternative, consider using a group-level single-step
command instead.

NOTE Etnus receives many bug reports about processes being hung. In
almost all cases, the reason is that one process is waiting for another. Using
the Group debugging commands almost always solves this problem.

g Determining which processes and threads are executing

The TotalView Root Window helps you determine where various pro-
cesses and threads are executing. When you select a line of code in the
Process Window, the Root Window Attached Page is updated to show
which processes and threads are executing that line. See “Displaying
Thread and Process Locations” on page 147.

g Viewing variable values

You can view (laminate) the value of a variable that is replicated across
multiple processes or multiple threads in a single Variable Window. See
“Displaying a Variable in All Processes or Threads” on page 196.

g Restarting from within TotalView
You can restart a parallel program at any time. If your program runs too
far, you can kill the program by selecting the Group > Delete command.
Version 5.0 TotalView Users Guide 121

1

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
This command kills the master process and all the slave processes. Re-
starting the master process (for example, mpirun or poe) recreates all of
the slave processes. Startup is faster when you do this because
TotalView does not need to reread the symbol tables or restart its server
processes since they are already running.

MPICH Debugging Tips

Here are some debugging tips that apply only to MPICH:

g Passing options to mpirun

You can pass options to TotalView through the MPICH mpirun com-
mand.

To pass options to TotalView when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun
to invoke TotalView with the –no_stop_all option as in the following C
shell, example:

setenv TOTALVIEW "totalview –no_stop_all"

g Using ch_p4

If you start remote processes with MPICH/ch_p4, you may need to
change the way TotalView starts its servers.

By default, TotalView uses rsh to start its remote server processes. This
is the same behavior as ch_p4. If you configure MPICH/ch_p4 to use a
different start-up mechanism from another process, you will probably
also need to change the way that TotalView starts the servers.

For more information about tvdsvr and rsh, see “Single Process Server
Launch Options” on page 62. For more information about rsh, see “Single
Process Server Launch Command” on page 66.

IBM PE Debugging Tips

Here are some debugging tips that apply only to IBM MPI (PE):

g Avoid unwanted timeouts

You can cause undesired timeouts if you place breakpoints that stop
other process too soon after calling MPI_Init() or MPL_Init(). If you cre-
ate “stop all” breakpoints, the first process that gets to the breakpoint
stops all the other parallel processes that have not yet arrived at the
breakpoint. This may cause a timeout.
22 TotalView Users Guide Version 5.0

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
To turn the option off, select the Process Window’s Action Point >
Properties command while the line with the stop symbol is selected.
After the Properties dialog box appears, you should deselect the Plant in
share group check box.

g Control the poe process

Even though the poe process continues under TotalView control, you
should not attempt to start, stop, or otherwise interact with it. Your par-
allel tasks require that poe continue to run. For this reason, if poe is
stopped, TotalView automatically continues it when you continue any
parallel task.

g Avoid slow processes due to node saturation

If you try to debug a PE program in which more than three parallel tasks
run on a single node, the parallel tasks on each node may run noticeably
slower than they would run if you were not debugging them.

This becomes more noticeable as the number of tasks increases, and, in
some cases, the parallel tasks may make hardly any progress. This is be-
cause PE uses the SIGALRM signal to implement communications oper-
ations, and AIX requires that debuggers must intercept all signals. As the
number of parallel tasks on a node increases, TotalView becomes satu-
rated, and cannot keep up with the SIGALRMs being sent, thus slowing
down the tasks.
Version 5.0 TotalView Users Guide 123

1

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
24 TotalView Users Guide Version 5.0

Version 5.0
Chapter 6
Debugging Programs

This chapter explains how to perform basic debugging tasks with TotalView. The
topics discussed are:

g Displaying Your Program’s Call Tree
g Find Code As You Are Debugging
g Display Your Code in Source and Assembler Formats
g Return to the Currently Executing Line in the Stack Frame
g Invoke Your Editor on Source Files You Are Debugging
g Interpret Status and Control Registers
g Use Commands for Controlling Processes and Threads
g Control Process Groups in Multiprocess Programs

g Set Action Points
g Use Single-step Commands
g Set The Program Counter

Displaying Your Program’s Call Tree

Debugging is an art, not a science. Locating a problem is often 90% or
more of the effort. Debugging often means having the “intuition” to know
what a problem means and where to look for it. TotalView’s call tree is one
tool that helps you get an understanding of what your program is doing so
that you can begin to understand how your program is executing.
TotalView Users Guide 125

1

6
Debugging Programs

Displaying Your Program’s Call Tree
Use the Tools > Call Tree command in the Process Window to tell
TotalView to display a call tree window. (See Figure 64.)

The call tree is a diagram showing all the currently active routines. These
routines are linked by arrows indicating that one routine is called by an-
other. This call tree is a dynamic call tree in that it displays the call tree at
the time when TotalView creates the call tree. The Update button tells
TotalView to recreate this display.

You can tell TotalView to display a call tree for all processes and threads,
just the current process, or for this process’s control group. If the call tree
is for a multiprocess or multithreaded program, numbers next to the ar-
rows indicate how many times a routine was called when the tree was cre-
ated.

As you begin to understand your program, you will see that your program
may have a rhythm and a dynamic that is reflected in this diagram. As you
examine this structure, you will sometimes see things that do not look

FIGURE 64: Tools > Call Tree Dialog Box
26 TotalView Users Guide Version 5.0

Debugging Programs

Finding the Source Code for Functions
right—which is a subjective response to the data. These places are often
where you want to begin looking for problems.

Looking at the call tree can also tell you where bottlenecks are occurring.
For example, if one routine is used by many other routines and that routine
controls a shared resource, this thread may be negatively affecting perfor-
mance. For example, in the previous figure the snore routine might be a
bottleneck.

Finding the Source Code for Functions

You can search for a function’s declaration by selecting the View >
Lookup Function command and typing a function name within the follow-
ing dialog box.

After TotalView finds the source code, it displays it in the Source Pane. If
the function you selected was not compiled with source-line information,
TotalView displays disassembled machine code.

NOTE When you want to return to the previous contents of the Source Pane, use
the undive icon located in the upper right corner of the Source Pane and just below
the Stack Frame Pane. You can also use the View > Reset command to discard the
dive stack so that the Source Pane is displaying the PC it displayed when it was first
stopped.

You can use the File > Edit Source command (see “Editing Source Text” on
page 132 for details) or an X Window System client such as xmore, vi, or
emacs to display these files.

FIGURE 65: View > Lookup Function Dialog Box
Version 5.0 TotalView Users Guide 127

1

6
Debugging Programs

Finding the Source Code for Functions
Another method of locating a function’s source code is by diving into it
from within the Source Pane.

Resolving Ambiguous Names

Sometimes the function name you specify is ambiguous. For example, you
may have specified the name of:

g A static function and your program contains multiple static functions by
that same name.

g A member function in a C++ program and there are multiple classes
with member functions of that name.

g An overloaded function or a template function.

Figure 66 shows an example of the dialog that TotalView displays when it
encounters an ambiguous function name.

To resolve the ambiguity, click one of the function names.

TotalView may request that you select a function when you:

g Specify a function name with the View > Lookup Function command.

g Dive on a name in the Source Pane.

FIGURE 66: Ambiguous Function Dialog Box
28 TotalView Users Guide Version 5.0

Debugging Programs

Finding the Source Code for Files
g Set a breakpoint at a line in a function.

g Select a function by clicking on its name in the Stack Trace Pane.

Finding the Source Code for Files

You can display a file’s source code by selecting the View > Lookup
Function command and entering the file name in the dialog box shown in
Figure 67.

You can enter the name of a header file if the header file contains source
lines that produce executable code.

Examining Source and Assembler Code

You can display your program in several different ways. If you display as-
sembler in the Source Pane, you can also display addresses in the following
ways:

Source code (Default)
Use the View > Source As > Source command.

Assembler code Use the View > Source As > Assembler command.

Source and assembler interleaved
Use the View > Source As > Interleaved command.

Source statements are treated as comments. You can
set breakpoints or evaluation points only at the ma-
chine level. Setting an action point at the first instruc-
tion after a source statement, however, is equivalent
to setting it at that source statement.

FIGURE 67: View > Lookup Function Dialog Box
Version 5.0 TotalView Users Guide 129

1

6
Debugging Programs

Examining Source and Assembler Code
You can tell TotalView to display assembler code using symbolic or abso-
lute addresses:

The following three figures illustrate the different ways TotalView can dis-
play assembler code.

NOTE You can also display assembler instructions in a Variable Window. For more
information, see “Displaying Machine Instructions” on page 157.

TABLE 9: Assembler Code Display Styles

To Display Address Using Use This Command
Absolute addresses for locations and
references—default

View > Assembler > By Address

Symbolic addresses (function names
and offsets) for locations and refer-
ences

View > Assembler > Symbolically

FIGURE 68: Address Only (Absolute Addresses)

 Gridget (dotted grid) indicates action point can be set
on an instruction
Location by absolute address

 References by absolute address
30 TotalView Users Guide Version 5.0

Debugging Programs

Examining Source and Assembler Code
FIGURE 69: Assembler Only (Symbolic Addresses)

FIGURE 70: Interleaved Source/Assembler (Absolute Addresses)

 Location by function and offsets
References by function and offsets

Source line
Location by absolute address
References by absolute address
Version 5.0 TotalView Users Guide 131

1

6
Debugging Programs

Resetting the Current Stack Frame
Resetting the Current Stack Frame

You can return to the executing line of code for the current stack frame by
selecting the View > Reset command. This command forces the PC arrow
onto the screen and discards the dive stack.

This command is also useful if you want to undo the effect of scrolling or of
moving to different locations using, for example, the View > Lookup
Function command. For details, see “Finding the Source Code for Functions” on
page 127.

If the program has not begun to run, the View > Reset command displays
the first executable line in your main program function or subroutine.

Editing Source Text

You can use the File > Edit Source command to edit source files while you
are debugging. TotalView starts your editor on the source file being dis-
played in the Source Pane of the Process Window.

TotalView uses an editor launch string to determine how to start your editor.
TotalView expands this string into a command that is then executed by the
sh shell.

The fields within File > Preferences’s Launch Strings page let you change
the editor and the way TotalView launches the editor. The Help for this
page contains information on how you set this preference.

You can also change the editor launch string by using a TotalView prefer-
ence. You can find information on this in the online help.

Using the Toolbar to Select a Target

The Process Window’s toolbar can be divided into three parts. The first
part defines the scope of the command selected in the second part of the
toolbar. (The third part, which is not shown, changes the Process Window’s
display between processes and threads.) A few examples will make this
clear. Figure 71 shows the left portion of the toolbar.
32 TotalView Users Guide Version 5.0

Debugging Programs

Stopping Processes and Threads
NOTE See Chapter 3 of the CLI for a discussion of groups, processes, and threads.

The first pulldown has three elements on it: Group, Process, and Thread.
Your choices here indicate the width of the command. For example, if
Group is selected, a Go command will continue the group. Which group
TotalView will continue is set by the choices on the second pulldown. If, for
example, Group and Control are selected, then Go continues the control
group, Step single-steps the control group, and so on.

In most cases, you will choose items within the first two elements, then
manipulate your program by using the remaining command buttons. In
most cases, you will use the following two combinations:

For example, most MPI programs are debugged using the bottom setting.

Stopping Processes and Threads

To stop a group, process, or thread, go to the Process Window and select a
Halt command from the Group, Process, or Thread pulldowns:

The Halt commands differ in the scope of what they halt. In all cases,
TotalView uses the current thread (which is called the thread of interest or
TOI) to determine what else it will halt. For example, Process > Halt stops
the process that contains the TOI. When you use Group > Share > Halt,
TotalView determines what other threads are in the same share group as
the TOI, then stops the processes associated with these threads.

FIGURE 71: The Toolbar

FIGURE 72: Toolbar Combinations
Version 5.0 TotalView Users Guide 133

1

6
Debugging Programs

Updating Process Information
After entering a Halt command, TotalView updates the Process Window and
all related windows. When you restart the process, execution continues
from the point where the process stopped.

Updating Process Information

You can force the Process Window to update process information by using
the Window > Update command. This command tells TotalView that it
should temporarily stop the process so that it can reread the thread regis-
ters and memory. After this information is acquired, the process continues
executing. This allows you to quickly refresh your view of a process.

Holding and Releasing Processes and Threads

TotalView allows you to hold and release processes and threads. When
something is held, all commands that tell it to run, such as Process > Go
or Group > Go, have no effect.

Manually holding and releasing processes and threads is useful if:

g You wish to run a subset of the processes and threads, you can manually
hold all but the ones you want to run.

g A process is held at a barrier point and you want to run it without first
running all the other processes in the group to that barrier, you can re-
lease it manually and then run it. Thread behavior at thread barriers is
similar.

A process or thread may also be held if it stops at a barrier breakpoint. You
can manually release a process or thread being held at a barrier break-
point. See “Barrier Breakpoints” on page 212 for more information on manu-
ally holding and releasing barrier breakpoint.

When a process is being held, the Root Window and Process Window dis-
play a held indicator. (This is a letter H.) When a thread is being held, the
letter displayed is h.

Here are the ways to hold or release a thread, process, or group of pro-
cesses:
34 TotalView Users Guide Version 5.0

Debugging Programs

Examining Groups
g You can hold a group of processes by choosing the Group > Hold com-
mand.

g You can then release the group of processes by choosing the Group >
Release command.

g You can toggle the hold/release state of a process by selecting and dese-
lecting the Process > Hold command.

g You can toggle the hold/release state of a thread by selecting and dese-
lecting the Thread > Hold command.

If a process or a thread is running when you issue a hold or release com-
mand, TotalView first stops the process or thread then holds it.

NOTE Releasing a process does not mean that the thread will resume executing;
execution only resumes after you use one of the execution commands. In addition,
TotalView allows you to hold and release processes independently from threads. That
is, changing a process’s hold state does not affect its threads’ hold state and vice
versa.

Notice that the Process pulldown also contains a Hold Threads and
Release Threads command. If you select Hold Threads, the scope of what
is held is the same as when you select Hold. This command, however, is
used for another purpose. Assume that you are debugging a process with
fifty threads and you want only a few of them to run. You could select Hold
Threads, then go to the Threads menu to release only those that you want
to run. That is, this command and Release Threads are convenience func-
tions that can save you some work.

Examining Groups

When you debug a multiprocess program, TotalView adds each process to a
control group and a share group as the process starts.

NOTE These groups are not related to UNIX process groups or PVM groups.

TotalView groups the processes depending on the type of system call
(fork() or execve()) that created or changed the processes. The two types
of process groups are:
Version 5.0 TotalView Users Guide 135

1

6
Debugging Programs

Examining Groups
Control Group Includes the parent process and all related pro-
cesses. A control group includes children that a pro-
cess forked (processes that share the same source
code as the parent). It also included forked children
that subsequently call a function such as execve().
That is, a control group can contain processes that do
not share the same source code as the parent.

Control groups also include processes created in par-
allel programming disciplines like MPI.

Members of a control group can be stopped as a
group.

Share Group Is the set of processes within a control group that
share the same source code. Members of the same
share group share action points.

NOTE A full discussion of Groups, Processes, and Threads can be found in Chapter
3 of the CLI Guide. This information is also contained within Help. In addition, you
can download this information from our Web site.

TotalView automatically creates share groups when your processes fork
children that call execve() or when processes using the same code are cre-
ated in some parallel programming models such as MPI.

TotalView names processes based upon the name of the source program.
Here are the naming rules TotalView uses:

g TotalView names the parent process after the source program.

g Child processes that are forked have the same name as the parent, but
with a numerical suffix (.n). If you are running an MPI program, the nu-
meric suffix is the process’s rank in COMM_WORLD.

g Child processes that call execve() after they are forked have the parent’s
name, the name of the new executable in angle brackets (<>) and a nu-
merical suffix.

For example, if the generate process does not fork any children, and the
filter process forks a child process that subsequently calls itself and then
calls execve() to execute the expr program, TotalView names and groups
the processes as shown in Figure 73.
36 TotalView Users Guide Version 5.0

Debugging Programs

Examining Groups
Displaying Groups

The Root Window’s Attached Page displays the names of individual pro-
cesses. To display a list of process and thread groups, select the Root Win-
dow’s Group Tab. See Figure 74.

FIGURE 73: Example of Control Groups and Share Groups

FIGURE 74: Root Window: Groups Page

Process Groups Process Names Relationship

filter
filter.1

filter<expr>.1.1

generate

parent process #1
child process #1

grandchild process
#1

parent process #2

Share Group 1
Control
Group 1 Share Group 2

Control
Group 2 Share Group 3

 Name of executable
Type of process or threadgroup

 Select a group in the top pane to display
members
Version 5.0 TotalView Users Guide 137

1

6
Debugging Programs

Starting Processes and Threads
When you select a group in the top list, TotalView updates the bottom list
to show the group’s members. After the bottom portion is updated, you
can dive into any of these processes or threads by double-clicking on it.

Placing Processes into Groups

TotalView uses your executable’s name to determine the share group to
which the program belongs. It does not examine the program to see if it is
identical to another program with the same name; TotalView assumes the
programs are identical because their names are identical.

TotalView does not expand a program’s full path name, so if one instance
of a program is named with the full path name (./foo), and another is
named with the file name (foo), the programs are placed in different share
groups.

Starting Processes and Threads

To start a process, go to the Process Window and select a Go command
from the Group, Process, or Thread pulldowns.

After you enter a Go command, TotalView decides what it will run based on
the current thread. It uses this thread to decide what other threads it
should run. For example, if you enter Group > Workers > Go, TotalView
continues all threads in the workers group associated with this thread.

The most often used commands are Group > Go and Process > Go. The
Group > Go command creates and starts this process and all other pro-
cesses in the multiprocess program (control group). It resumes execution
of this process and the execution of all processes in the control group if
the process:

g Is not being held

g Already exists and is stopped, or

g Is at a breakpoint.

Issuing Group > Go on a process that’s already running starts the other
members of the control group.
38 TotalView Users Guide Version 5.0

Debugging Programs

Starting Processes and Threads
Process > Go creates and starts this process. It resumes execution if the
process is not being held, already exists and is stopped, or is at a break-
point. Starting a process causes all threads in the process to resume exe-
cution unless the thread is held.

NOTE Thread > Go is disabled if asynchronous thread control is not available.

For a single-process program, Process > Go and Group > Go are equiva-
lent. For a single-threaded process, Process > Go and Thread > Go are
equivalent.

NOTE If TotalView is holding a process or thread, these commands will not start
the process or threads. See “Holding and Releasing Processes and Threads” on page 134.

Creating a Process Without Starting It

The Process > Create command creates a process and stops it before any
of your program executes. If a program is linked with shared libraries,
TotalView allows the dynamic loader to map into these libraries. Creating a
process without starting it is useful if you need to:

g Create watchpoints or change global variables after a process is created,
but before it runs.

g Debug C++ static constructor code.

Creating a Process by Single-Stepping

The TotalView single-stepping commands allow you to create a process
and run it to a location in your programs. The single-stepping commands in
the Process menu are as shown in the following table.

TABLE 10: Creating a Process by Stepping

Command Creates the process and ...
Process > Step Runs it to the first line of the main() routine.
Process > Next Runs it to the first line of the main() routine;

this is the same as Process > Step.
Process > Step Instruction Stops it before any of your program executes.
Version 5.0 TotalView Users Guide 139

1

6
Debugging Programs

Stepping
If a group-level or thread-level stepping command creates a process, the
behavior is the same as if it were a process-level command.

Stepping

TotalView’s stepping commands allow you to:

g Execute one source line or machine instruction at a time.

g Run to a selected line, which acts like a temporary breakpoint.

g Run until a function call returns.

Single-step commands are on the Group, Process, and Thread menus, and
operate at group, process, or thread width. This width affects which
threads within a process and processes within a group TotalView allows to
run while the single-stepping command is executing.

In all cases, stepping commands operate on the TOI, which is the selected
thread in the current Process Window.

On all platforms except SPARC Solaris, TotalView uses smart single stepping
to speed up stepping of one-line statements containing loops and condi-
tions, such as Fortran 90 array assignment statements. Smart stepping oc-
curs when TotalView realizes that it does not need to step through an
instruction. For example, assume that you have the following statements:

integer iarray (1000,1000,1000)
iarray = 0

These two statements cause one billion scalar assignments. If your ma-
chine steps every instruction, you will probably never get past this state-
ment. Smart stepping means that TotalView will single step through the
assignment statement at a speed that is very close to your machine’s na-
tive speed.

Process > Next Instruction Runs it to the first line of the main() routine.
this is the same as Process > Step.

Process > Run To Runs it to the line or instruction selected in
the Process Window.

TABLE 10: Creating a Process by Stepping (cont.)

Command Creates the process and ...
40 TotalView Users Guide Version 5.0

Debugging Programs

Stepping
Process-Width Stepping

The behavior of process-width stepping commands depends on whether
the Group of Interest (GOI) is set to a process group or a thread group.

GOI is a process group
TotalView runs the process until the Thread of Interest
(TOI) arrives at its goal location, which can be the next
statement, the next instruction, and so forth. When it
reaches the goal, TotalView stops the process and the
command completes.

When the GOI is a thread group
The behavior differs. All threads in the GOI and all
manager threads are allowed to run. As each member
of the GOI arrives at the goal, it is stopped; the rest of
the threads are allowed to continue. The command
ends when all members of the GOI arrive at the goal.
At that point, TotalView stops the whole process.

NOTE The Run To commands are similar, but there are some important differences.
See “Executing to a Selected Line” on page 144 for more information.

Group-Width Stepping

The behavior of group-width stepping commands depends on whether the
Group of Interest (GOI) is a process group or a thread group.

GOI is a process group
TotalView examines the group and identifies each pro-
cess in it having a thread stopped at the same loca-
tion as the TOI (a matching process). TotalView runs all
processes in the control group associated with the
process of interest (POI). Each time a thread arrives at
the goal, the process containing that thread is
stopped. The command finishes when TotalView stops
all “matching” processes. At that time, all members of
the control group are also s stopped.

GOI is a thread group
TotalView also runs all processes in the control group.
However, as a thread arrives at the goal, just that
thread is stopped; the rest of the threads in the pro-
Version 5.0 TotalView Users Guide 141

1

6
Debugging Programs

Stepping
cess containing it are allowed to continue. The com-
mand finishes when all threads in the GOI have
arrived at the goal. (Threads that are not in the same
share group as the TOI are not waited for, since they
are executing different code, and can never arrive at
the goal.) When the command finishes, all processes
in the control group are again stopped.

NOTE The Run To commands are similar, but there are some important differences.
See “Executing to a Selected Line” on page 144 for more information.

Thread-Width Stepping

When TotalView executes a thread-width stepping command, it steps the
TOI while holding the other threads in the process.

NOTE Thread stepping is not implemented on Sun platforms. On SGI platforms,
thread stepping is not available with pthread programs. If, however, your program is
based on SGI compiler-generated parallelism such as used in OpenMP, thread step-
ping is available.

Stepping a thread tells TotalView that it should just run that thread.
TotalView also allows all manager threads to run freely while it steps the
TOI.

Thread-level single-step operations can fail to complete if the TOI needs to
synchronize with a thread that is not running. For example, if the TOI re-
quires a lock that another held thread owns, and steps over a call that tries
to acquire the lock, the primary thread cannot continue successfully. You
must allow the other thread to run in order to release the lock. If this ap-
plies, you should instead use process width.

Selecting Source Lines

Several of the single-stepping commands require you to select a source
line or machine instruction in the Source Pane. To choose a source line,
place the cursor over the line and select it. See “Displaying Thread and Process
Locations” on page 147 for information on what occurs within the Root Win-
dow when you select a source line or machine instruction.
42 TotalView Users Guide Version 5.0

Debugging Programs

Using Single-Step Commands
If you select a source line that has more than one instantiation (for exam-
ple, in a C++ function template or code in a header file), TotalView dis-
plays its Ambiguous Line dialog box that allows you to select a specific
instantiation, as shown in the following figure.

You can now select the function in which the line is located so TotalView
can determine where it should place its goal.

Using Single-Step Commands

While different programs have different requirements, the most common
debugging stepping mode is to set group focus to Control and the target
to Process or Group. You can now select stepping commands from the
Process or Group menus or use commands in the icon bar.

The following applies to all single-step command:

g To cancel a single-step command, put the mouse pointer in the Process
Window and select Group > Halt or Process > Halt.

FIGURE 75: Ambiguous Line Dialog Box
Version 5.0 TotalView Users Guide 143

1

6
Debugging Programs

Executing to a Selected Line
g If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the break-
point.

g If you issue a source-line step command and the primary thread is exe-
cuting in a function that has no source-line information, TotalView per-
forms the corresponding instruction step instead.

When TotalView steps, it steps a line at a time. This means that if you have
more than one statement on a line a step instruction executes all the in-
structions.

Stepping into Function Calls

The stepping functions execute a single source line or instruction. If the
source line or instruction names a function, TotalView steps into it. If the
source does not exist, TotalView displays the machine instructions for the
function.

TotalView has eight Step commands and eight Step Instruction com-
mands. These commands are located on the Group, Process, and Thread
pulldowns.

Stepping Over Function Calls

When you step over a function, TotalView stops execution when the pri-
mary thread returns from the function and reaches the source line or in-
struction after the function call.

TotalView has eight Next commands that execute a single source line while
stepping over functions and eight Next Instruction commands that exe-
cute a single machine instruction while stepping over functions. These
commands are located on the Group, Process, and Thread pulldowns.

Executing to a Selected Line

You do not have to set a breakpoint to stop execution at a specific line be-
cause TotalView lets you run your program to a selected line or machine in-
struction. After selecting the line on which you want the program to
44 TotalView Users Guide Version 5.0

Debugging Programs

Executing to a Selected Line
stop, invoke one of the eight Run To commands. These commands are
located on the Group, Process, and Thread pulldowns.

The Run To commands do not work like the other group single-step com-
mands. Here is what you should know if you are running at process width:

Process group If the TOI is already at the goal location, TotalView
steps the TOI past the line before the process is run.
This allows you to use the Run To command repeat-
edly within loops.

Thread group If any thread in the process is already at the goal. It is
temporarily held while other threads in the process
run. After all threads in the thread group reach the
goal, TotalView stops the process. This allows you to
synchronize the threads within the process of interest
at a source line.

If you are running at group width:

Process group TotalView examines each process in the process and
share group to determine if at least one thread is al-
ready at the goal. If a thread is at the goal, TotalView
holds its process. Other process are allowed to run.
When at least one thread from each of these pro-
cesses is held, the command completes. This lets you
synchronize at least one thread in each of these pro-
cesses at a source line. If you are running a control
group, this synchronizes all processes in the share
group.

Thread group TotalView examines all the threads in the thread group
that are in the same share group as the TOI to deter-
mine if a thread is already at the goal. If it is, TotalView
holds it. Other threads are allowed to run. When all of
the threads in the TOI’s share group reach the goal,
TotalView stops the TOI’s control group and the com-
mand completes. This lets you synchronize thread
group members. If you are running a workers group,
this synchronizes all worker threads in the share
group.
Version 5.0 TotalView Users Guide 145

1

6
Debugging Programs

Executing to a Selected Line
The process stops when the TOI and at least one thread from each process
in the group or process reach the command stopping point. This lets you
synchronize a group of processes and bring them to one location.

You can also run to a selected line in a nested stack frame, as follows:

1 Select a nested frame in the Stack Trace Pane.

2 Select a source line or instruction within the function.

3 Issue a Run To command.

TotalView executes the primary thread until it reaches the selected line in
the selected stack frame.

If your program calls recursive functions, you can select a nested stack
frame in the Stack Trace Pane. In this situation, TotalView uses the frame
pointer (FP) of the selected stack frame and the selected source line or in-
struction to determine when to stop execution. When your program
reaches the selected line, TotalView compares the value of the selected FP
to the value of the current FP:

g If the value of the current FP is deeper (more deeply nested) than the
value of the selected FP, TotalView automatically continues your pro-
gram.

g If the value of the current FP is equal or shallower (less deeply nested)
than the value of the selected FP, TotalView stops your program.

If your program reaches a breakpoint while running to a selected line, the
debugger discards the “run to” operation and stops at the breakpoint.

Executing to the Completion of a Function

You can step your program out of a function call. To finish executing the
current function in a thread, select one of the eight Out commands. These
commands are located on the Group, Process, and Thread pulldowns.

If the source line that is the goal of the Out operation has more than one
statement, TotalView will stop you just after the routine from which just
emerged. This allows you to step into the next routine on the line.

When one of these command completes, the primary thread is left stopped
at the instruction after the one that called the function.
46 TotalView Users Guide Version 5.0

Debugging Programs

Displaying Thread and Process Locations
You can also return out of several functions at once, by selecting a nested
stack frame in the Stack Trace Pane and then issuing an Out command.

TotalView executes the primary thread until it returns to the function in the
selected frame.

If your program calls recursive functions or mutually recursive functions,
you can select a nested stack frame in the Stack Trace Pane to tailor com-
pletion of the function even more. In this situation, TotalView uses the
frame pointer (FP) of the selected stack frame and the selected source line
or instruction to determine when to stop execution. When your program
reaches the selected line, TotalView compares the value of the selected FP
with the value of the current FP:

g If the value of the current FP is deeper (more deeply nested) than the
value of the selected FP, TotalView continues executing your program.

g If the value of the current FP is equal or shallower (less deeply nested)
than the value of the selected FP, TotalView stops your program.

Displaying Thread and Process Locations

You can see which processes and threads in the share group are at a loca-
tion by selecting a source line or machine instruction in the Source Pane of
the Process Window. TotalView dims thread and process information in the
Root Window’s Attached Page for share group members if the thread or
process is not at the selected line. A process is considered to be at the se-
lected line if any of the threads in the process are at that line. Selecting a
line in the Process Window that is already selected removes the dimming in
the Attached Page.

The Attached Page reflects the line that you selected most recently. If you
have several Process Windows open, the display in the Attached Page will
change depending on the line you selected last in a Process Window. The
display can also change after an operation that changes the process state
or when you issue a Window > Update command.
Version 5.0 TotalView Users Guide 147

1

6
Debugging Programs

Continuing with a Specific Signal
Figure 76 shows an Attached Page with dimmed process information. In
this example, the parallel program was run to a barrier breakpoint, and one
process (mpirun<cpi>.0) was single-stepped to the next source line.

Note that since the MPI starter process (mpirun) is not in the same share
group as the processes running the cpi program, the process information is
not dimmed.

Continuing with a Specific Signal

Letting your program continue to execute with a specific signal is useful
when your program contains a signal handler. Here is how you tell
TotalView that this should occur:

1 Select the Process Window’s Thread > Continuation Signal com-
mand.

2 In the displayed dialog box, type the name select the signal to be
sent to the thread.

3 Select OK.

The continuation signal is set for the thread you are focused on in the
Process Window. If the operating system can deliver multithreaded sig-
nals, you may set a separate continuation signal for each thread. If it

FIGURE 76: Dimmed Process Information in the Root Window
48 TotalView Users Guide Version 5.0

Debugging Programs

Setting the Program Counter
cannot, this command clears continuation signals set for other threads
in the process.

4 Continue execution of your program with commands such as Process
> Go, Step, Next, or Detach.

TotalView continues the threads with the specified signals.

NOTE You can clear the continuation signal by selecting signal 0.

Setting the Program Counter

You might find it useful to resume the execution of a thread at some state-
ment other than the one where it stopped. You can do this by resetting the
value of the program counter (PC). For example, you might want to skip
over some code, execute some code again after changing certain variables,
or restart a thread that is in an error state.

Setting the PC can be crucial when you want to restart a thread that is in an
error state. Although the PC icon in the tag field points to the source state-
ment that caused the error, the PC actually points to the failed machine in-
struction within the source statement. You need to explicitly reset the PC
to the correct instruction. (You can verify the actual location of the PC be-
fore and after resetting it by displaying it in the Stack Frame Pane or dis-
playing interleaved source and assembler code in the Source Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source
line, a selected instruction, or an absolute value (in hexadecimal). When
you set the PC to a selected line, the PC points to the memory location
where the statement begins. For most situations, setting the PC to a se-
lected line of source code is all you need to do.

To set the PC to a selected line:

1 If you need to set the PC to a location somewhere within a line of
source code, display the View > Source As > Interleaved command.
TotalView responds by displaying the assembler code.

2 Select the source line or instruction in the Source Pane. TotalView
highlights.
Version 5.0 TotalView Users Guide 149

1

6
Debugging Programs

Deleting Programs
If you select a line in a C++ function template that has more than one
instantiation, TotalView asks you to select an instantiation. See “Selecting
Source Lines” on page 142 for a description of how this works.

3 Select the Thread > Set PC command. TotalView asks for confirma-
tion, resets the PC, and moves the PC icon to the selected line.

When you select a line and ask TotalView to set the PC to that line,
TotalView attempts to force the thread to continue execution at that state-
ment in the currently selected stack frame. If the currently selected stack
frame is not the top stack frame, TotalView asks if it can unwind the stack:

This frame is buried. Should we attempt to unwind the stack?

If you select Yes, TotalView discards deeper stack frames (that is, all stack
frames that are more deeply nested than the selected stack frame) and re-
sets the machine registers to their values for the selected frame. If you se-
lect No, TotalView sets the PC to the selected line, but it leaves the stack
and registers in their current state. Since you cannot assume that the stack
and registers have correct values, selecting No is not usually the right thing
to do.

Deleting Programs

To delete all the processes in a control group, select the Group > Delete
command. The next time you start the program, for example, by using the
Process > Go command, TotalView creates and starts a fresh master pro-
cess.

Restarting Programs

You can use the Group > Restart command to restart a program that is
running or one that is stopped but has not exited.

If the process is part of a multiprocess program, TotalView deletes all re-
lated processes, restarts the master process, and runs the newly created
program.
50 TotalView Users Guide Version 5.0

Debugging Programs

Checkpointing Programs and Processes
The Group > Restart command is equivalent to the Group > Delete com-
mand followed by the Process > Go command.

Checkpointing Programs and Processes

On SGI IRIX platforms, you can save the state of selected processes and
then use this saved information to restart the processes from the position
where they were saved. For more information, see the Process Window’s
Tools > Create Checkpoint and Tools > Restart Checkpoint commands in
TotalView’s Help information. In addition, you can also perform these same
activities from within the CLI by using the dcheckpoint and drestart com-
mands.

Interpreting Status and Control Registers

The Stack Frame Pane in the Process Window lists the contents of CPU reg-
isters for the selected frame—you may need to scroll past the stack local
variables to see them. To learn about the meaning of these registers, you
need to consult the user’s guide for your CPU and Appendix C, “Architec-
tures” on page 337.

For your convenience, TotalView displays the bit settings of many CPU reg-
isters symbolically. For example, TotalView symbolically displays registers
that control rounding and exception enable modes. You can edit the values
of these registers and continue execution of your program. For example,
you might do this to examine the behavior of your program with a different
rounding mode.

Since the registers that are displayed vary from platform to platform, see
Appendix C, “Architectures” on page 337 for information on the registers sup-
ported for your CPU. For general information on editing the value of vari-
ables (including registers), refer to “Displaying Areas of Memory” on page 156.
Version 5.0 TotalView Users Guide 151

1

6
Debugging Programs

Interpreting Status and Control Registers
52 TotalView Users Guide Version 5.0

Version 5.0
Chapter 7
Examining and Changing Data
This chapter explains how to examine and change data as you debug your pro-
gram. You will learn how to:

g Displaying Variable Windows
g Diving in Variable Windows
g Changing the Values of Variables
g Changing the Data Type of Variables
g Working with Opaque Data
g Changing the Address of Variables
g Changing Types to Display Machine Instructions
g Displaying C++ Types
g Displaying Fortran Types
g Displaying Thread Objects

Displaying Variable Windows

You can create windows that display local variables, registers, global vari-
ables, areas of memory, and machine instructions.

Displaying Local Variables and Registers

In the Stack Frame Pane, you can dive into a formal parameter, local vari-
able, or register to display a Variable Window. You can also dive into formal
parameters and local variables in the Source Pane. The Variable Window
lists the name, address, data type, and value for the object, as shown in
Figure 77.
TotalView Users Guide 153

1

7
Examining and Changing Data

Displaying Variable Windows
The top window is for a register while the bottom window is for a local array
variable.

You can also display a local variable by using the View > Lookup Variable
command. When prompted, enter the name of the variable in the dialog
box.

If Variable Windows remain open while a process or thread runs, TotalView
updates the information in the windows when the process or thread stops.
If TotalView cannot find a stack frame for a displayed local variable, it dis-
plays Stale in the pane’s header to warn you that you cannot trust the
data, since the variable no longer exists.

When you debug recursive code, TotalView does not automatically refocus
a Variable Window onto different instances of a recursive function. If you
have a breakpoint in a recursive function, you may need to explicitly open
a new Variable Window to see the value of a local variable for that stack
frame.

FIGURE 77: Diving into Local Variables and Registers
54 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying Variable Windows
Displaying a Global Variable

You can display a global variable by:

g Diving into the variable in the Source Pane.

g Select the View > Lookup Variable command. When prompted, enter
the name of the variable.

A Variable Window appears for the global variable, as shown in the follow-
ing figure.

Displaying All Global Variables

The Process Window’s Tools > Globals command display all of the current
process’s global variables. This window contains the name and value of ev-
ery global variable used by the process, as shown in Figure 79.

Displaying Long Variable Names

If due to space limitations, TotalView cannot display all the characters in a
variable name, it inserts ellipses (...) to indicate the name was truncated.
Typically, this occurs when it is displaying C++ names that have been de-
mangled or STL variables. Figure 80 on page 157 shows a Variable Window
containing a series of STL names. The two additional windows are what
TotalView displays when you click on the ellipses. Notice that one of the
windows has an Apply button. This indicates that the field is editable.

FIGURE 78: Variable Window for a Global Variable
Version 5.0 TotalView Users Guide 155

1

7
Examining and Changing Data

Displaying Variable Windows
Displaying Areas of Memory

You can display areas of memory in hexadecimal and decimal. Do this by
selecting the View > Lookup Variable command and then enter one of the
following in the dialog box:

g A hexadecimal address

When you enter a single address, TotalView displays the word of data
stored at that address.

g A pair of hexadecimal addresses

When you enter a pair of addresses, TotalView displays the data (in word
increments) from the first to the last address. To enter a pair of ad-
dresses, enter the first address, a comma, and the last address.

FIGURE 79: Global Variables Window
56 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying Variable Windows
NOTE All hexadecimal constants must have a “0x” prefix. Also, you can en-
ter these addresses using expressions.

The Variable Window for an area of memory, as shown in Figure 81, displays
the address and contents of each word.

The starting location of the memory area is displayed at the top of the win-
dow’s data area. Within the window, information is displayed in hexadeci-
mal and in decimal.

Displaying Machine Instructions

You can display the machine instructions for entire routines as follows:

g Dive into the address of an assembler instruction in the Source Pane
(such as main+0x10 or 0x60). A Variable Window displays the instruc-
tions for the entire function and highlights the instruction into which you
dived.

FIGURE 80: Displaying Long STL Names
Version 5.0 TotalView Users Guide 157

1

7
Examining and Changing Data

Displaying Variable Windows
g Dive into the PC in the Stack Frame Pane. A Variable Window lists the in-
structions for the entire function containing the PC, and highlights the
instruction to which the PC points.

g Cast a variable to type <code> or array of <code>, as described in
“Changing Types to Display Machine Instructions” on page 171. (See
Figure 83.)

Closing Variable Windows

When you are finished analyzing the information in a Variable Window, use
the File > Close command to close the window. You can also use the File >
Close Similar command to close all Variable Windows.

FIGURE 81: Variable Window for Area of Memory

FIGURE 82: Variable Window with Machine Instructions
58 TotalView Users Guide Version 5.0

Examining and Changing Data

Diving in Variable Windows
Diving in Variable Windows

If the variable being displayed in a Variable Window is a pointer, structure,
or array, you can dive into the contents listed in the Variable Window. This
additional dive is called a nested dive. When you perform a nested dive, the
Variable Window replaces the original information with information about
the current variable. With nested dives, the original Variable Window is
known as the base window.

You can select the left pointing triangular icon in the top right corner of this
window to restore the window to what it was before the last dive operation.
You can reselect this icon as often as you need so to restore the Variable
Window to its original display.

Figure 84 shows the results of diving into a variable in the Stack Frame
Pane of main(). This example dives into a pointer variable named node
with a type of node_t*. The first Variable Window (the base window) dis-
plays the value of node.

FIGURE 83: Casting Code
Version 5.0 TotalView Users Guide 159

1

7
Examining and Changing Data

Diving in Variable Windows
Diving into this value tells TotalView to replace the window with a nested dive
window. That is, new data replaces the old data without TotalView creating a
new window. The nested dive window—displayed in the bottom right cor-
ner of the figure—shows the structure referenced by the node_t* pointer.

TotalView maintains each dive on a dive stack.

You can manipulate Variable Windows and nested dive windows in the fol-
lowing ways:

g To “undive” from a nested dive, select the left-facing arrow in the upper
right-hand corner of the Variable Window. After clicking on the arrow, the
previous contents of the Variable Window appears.

g If you have performed several nested dives and want to create a new
copy of the base window, select the Window > Duplicate Base com-
mand.

g If you dive into a variable that already has a Variable Window open, the
Variable Window pops to the surface.

FIGURE 84: Nested Dives

 Base window: First dive (on the variable node_t*,
a pointer)

 Nested window: Second dive (on the value of node_t*)
 Undive icon
60 TotalView Users Guide Version 5.0

Examining and Changing Data

Changing the Values of Variables
g If you select the Window > Duplicate command, a new Variable Window
appears that is a duplicate of the current Variable Window except that it
has an empty dive stack.

Changing the Values of Variables

You can change the value of any variable or the contents of any memory lo-
cation displayed in a Variable Window by selecting the value and typing the
new value. In addition to typing a value, you can also type an expression.
For example, you can enter 1024*1024 as shown in Figure 85. This expres-
sion can use logical operators.

You can also edit a variable’s value directly within the Stack Frame Pane by
selecting it. You cannot, however, change the value of bit fields directly, but
you can use the Tools > Evaluation Window to assign a value to a bit field.
See “Evaluating Expressions” on page 232. Similarly, you cannot directly
change the value of fields in nested structures: you must first dive into the
value.

Changing the Data Type of Variables

The data type declared for the variable determines its format and size
(amount of memory). For example, if you declare an int variable, TotalView
displays the variable as an integer.

FIGURE 85: Using an Expression to Change a Value
Version 5.0 TotalView Users Guide 161

1

7
Examining and Changing Data

Changing the Data Type of Variables
You can change the way TotalView displays data in the Variable Window by
editing its data type. This is known as casting. TotalView assigns types to all
data types, and in most cases, they are identical to their programming lan-
guage counterparts.

g When displaying a C variable, TotalView data types are identical to C type
representations, except for pointers to arrays. TotalView uses a simpler
syntax for pointers to arrays.

g When displaying a Fortran variable, TotalView types are identical to For-
tran type representations for most data types including INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER.

If the window contains a structure with a list of fields, you can edit the
types of the fields listed in the window.

NOTE When you edit a type, TotalView changes how it displays the variable in the
current Variable Window, but other windows listing the variable remain the same.

How TotalView Displays C Data Types

TotalView’s syntax for displaying data is identical to C Language cast syn-
tax for all data types except pointers to arrays. That is, you should use C
Language cast syntax for int, short, unsigned, float, double, union, and all
named struct types.

TotalView types are read from right to left. For example, <string>*[20]* is
a pointer to an array of 20 pointers to <string>.

Table 11 shows some common types.

TABLE 11: Common Types

Type String Meaning
int Integer

int* Pointer to integer

int[10] Array of 10 integers

<string> Null-terminated character string

<string>** Pointer to a pointer to a null-terminated character
string

<string>*[20]* Pointer to an array of 20 pointers to null-terminated
strings
62 TotalView Users Guide Version 5.0

Examining and Changing Data

Changing the Data Type of Variables
You can also enter C Language cast syntax verbatim in the type field for any
type. In addition, TotalView can display C Language cast syntax perma-
nently if you set an X Window Resource. See totalview*cTypeStrings on
page 277 for further information.

The following sections discuss the more complex types.

Pointers to Arrays

Suppose you declared a variable vbl as a pointer to an array of 23 pointers
to an array of 12 objects of type mytype_t. The C language declaration for
this is:

mytype_t (*(*vbl)[23]) [12];

Here is how you would cast the vbl variable to this type:

(mytype_t (*(*)[23])[12])vbl

The TotalView cast for vbl is:

mytype_t[12]*[23]*

Arrays

Array type names can include a lower and upper bound separated by a co-
lon (:).

By default, the lower bound for a C or C++ array is 0, and the lower bound
for Fortran is 1. In the following example, an array of ten integers is de-
clared in C and then in Fortran:

int a[10];
integer a(10)

The elements of the array range from a[0] to a[9] in C, while the elements
of the equivalent Fortran array range from a(1) to a(10).

When the lower bound for an array dimension is the default for the lan-
guage, TotalView displays only the extent (that is, the number of elements)
of the dimension. Consider the following array declaration in Fortran:

integer a(1:7,1:8)
Version 5.0 TotalView Users Guide 163

1

7
Examining and Changing Data

Changing the Data Type of Variables
Since both dimensions of the array use the default lower bound for Fortran
(1), TotalView displays the data type of the array by using only the extent of
each dimension, as follows:

integer(7,8)

If an array declaration does not use the default lower bound, TotalView dis-
plays both the lower bound and upper bound for each dimension of the ar-
ray. For example, in Fortran, you would declare an array of integers with the
first dimension ranging from –1 to 5 and the second dimension ranging
from 2 to 10, as follows:

integer a(-1:5,2:10)

TotalView displays this in exactly the same way.

When editing a dimension of an array, you can enter just the extent (if using
the default lower bound) or both the lower and upper bounds separated by
a colon.

TotalView also lets you display a subsection of an array, or filter a scalar ar-
ray for values matching a filter expression. Refer to “Displaying Array Slices”
on page 183 and “Array Data Filtering” on page 188 for further information.

Typedefs

TotalView recognizes the names defined with typedef, but displays the def-
inition of the type (that is, the base data type), rather than its name. For
example:

typedef double *dptr_t;
dptr_t p_vbl;

The debugger displays the type for p_vbl as double*, not as dptr_t.

Structures

TotalView treats struct as a keyword. You can type struct as part of the type
string, but it is optional. If you have a structure and another data type with
the same name, however, you must include struct with the name of the
structure so TotalView can distinguish between the two data types.
64 TotalView Users Guide Version 5.0

Examining and Changing Data

Changing the Data Type of Variables
If you name a structure using typedef, the debugger uses the typedef name
as the type string. Otherwise, the debugger uses the structure tag for the
struct.

For example, consider the structure definition:

typedef struct mystruc_struct {
int field_1;
int field_2;

} mystruc_type;

TotalView displays mystruc_type as the type for struct mystruc_struct.

TotalView does not interpret the definition of structures in a type string. For
example, it cannot interpret a definition such as struct {int a; int b;}.

Unions

TotalView displays a union in the same way that it displays a structure.
Even though the fields of a union are overlaid in storage, TotalView displays
them on separate lines in the Variable Window.

When TotalView displays some complex arrays and structures, it displays
the compound object or array types in the Variable Window.

NOTE Editing the compound object or array types could yield undesirable results.
We do not recommend editing these types.

FIGURE 86: Displaying a Union
Version 5.0 TotalView Users Guide 165

1

7
Examining and Changing Data

Changing the Data Type of Variables
Built-In Types

TotalView provides a number of predefined types. These types are enclosed
in angle brackets (<>) to avoid conflict with types defined in a program-
ming language. You can use these built-in types anywhere a user-defined
type can be used, such as in a cast expression. These types are also useful
when debugging executables with no debugging symbol table information.
The following table lists the built-in types.

TABLE 12: Built-In Types

Type String Language Size Meaning
<address> C void* Void pointer (address)

<char> C char Character

<character> Fortran character Character

<code> C parcel Machine instructions

A parcel is the number of bytes
required to hold the shortest
instruction for the target archi-
tecture.

<complex> Fortran complex Single-precision floating-point
complex number.

complex types contain a real
part and an imaginary part,
which are both of type real.

<complex*8> Fortran complex*8 real*4-precision floating-point
complex number

complex*8 types contain a
real part and an imaginary part,
which are both of type real*4.

<complex*16> Fortran complex*16 real*8-precision floating-point
complex number

complex*16 types contain a
real part and an imaginary part,
which are both of type real*8.

<double> C double Double-precision floating-point
number
66 TotalView Users Guide Version 5.0

Examining and Changing Data

Changing the Data Type of Variables
<double
precision>

Fortran double
precision

Double-precision floating-point
number

<extended> C long double Extended-precision floating-
point number

Extended-precision numbers
must be supported by the tar-
get architecture.

<float> C float Single-precision floating-point
number

<int> C int Integer

<integer> Fortran integer Integer

<integer*1> Fortran integer*1 One-byte integer

<integer*2> Fortran integer*2 Two-byte integer

<integer*4> Fortran integer*4 Four-byte integer

<integer*8> Fortran integer*8 Eight-byte integer

<logical> Fortran logical Logical

<logical*1> Fortran logical*1 One-byte logical

<logical*2> Fortran logical*2 Two-byte logical

<logical*4> Fortran logical*4 Four-byte logical

<logical*8> Fortran logical*8 Eight-byte logical

<long> C long Long integer

<long long> C long long Long long integer

<real> Fortran real Single-precision floating-point
number

<real*4> Fortran real*4 Four-byte floating-point num-
ber

<real*8> Fortran real*8 Eight-byte floating-point num-
ber

<real*16> Fortran real*16 Sixteen-byte floating-point
number

<short> C short Short integer

TABLE 12: Built-In Types (cont.)

Type String Language Size Meaning
Version 5.0 TotalView Users Guide 167

1

7
Examining and Changing Data

Changing the Data Type of Variables
The following sections contain more information the following built-in
types:

g Character arrays (<string> Data Type)

g Areas of memory (<void> Data Type)

g Instructions (<code> Data Type)

Character arrays (<string> Data Type)
If you declare a character array as char vbl[n], TotalView automatically
changes the type to <string>[n]; that is, a null-terminated, quoted string
with a maximum length of n. Thus, by default, the array is displayed as a
quoted string of n characters, terminated by a null character. Similarly,
TotalView changes char* declarations to <string>* (a pointer to a null-ter-
minated string).

Since most C character arrays represent strings, the <string> type can be
very convenient. If, however, you intended the char data type to be a
pointer to a single character or an array of characters, you can edit the
<string> back to a char (or char[n]) to display the variable as you de-
clared it.

Areas of memory (<void> Data Type)
TotalView uses the <void> type for data of an unknown type, such as the
data contained in registers or in an arbitrary block of memory. The <void>
type is similar to the int in the C language.

If you dive into registers or display an area of memory, TotalView lists the
contents as a <void> data type. Further, if you display an array of <void>
variables, the index for each object in the array is the address, not an inte-
ger. This address can be useful when displaying large areas of memory.

<string> C char Array of characters

<void> C long Area of memory

TABLE 12: Built-In Types (cont.)

Type String Language Size Meaning
68 TotalView Users Guide Version 5.0

Examining and Changing Data

Changing the Data Type of Variables
If desired, you can change a <void> into another type. Similarly, you can
change any type into a <void> to see the variable in decimal and hexa-
decimal.

Instructions (<code> Data Type)
TotalView uses the <code> data type to display the contents of a location
as machine instructions. Thus, to look at disassembled code stored at a lo-
cation, dive on the location and change the type to <code>. To specify a
block of locations, use <code>[n], where n is the number of locations be-
ing displayed.

Type Casting Examples

This section contains some common type casting examples, as follows:

g Displaying the argv Array

g Displaying Declared Arrays

g Displaying Allocated Arrays

Displaying the argv Array
Typically, argv is the second argument passed to main(), and it is either a
char **argv or char *argv[]. Since these declarations are equivalent (a
pointer to one or more pointers to characters), TotalView converts both to
<string>** (a pointer to one or more pointers to null-terminated strings).

Suppose argv points to an array of three pointers to character strings.
Here is how you can edit its type to display an array of three pointers:

1 Select the type string for argv.

2 Edit the type string using the field editor commands. Change it to:
<string>*[3]*

3 To display the array, dive into the value field for argv. (See Figure 87.)

Displaying Declared Arrays
TotalView displays arrays in the same way as it displays local and global
variables. In the Stack Frame or Source Pane, dive into the declared array. A
Variable Window displays the elements of the array.
Version 5.0 TotalView Users Guide 169

1

7
Examining and Changing Data

Changing the Data Type of Variables
Displaying Allocated Arrays
The C language uses pointers for dynamically allocated arrays. For exam-
ple:

int *p = malloc(sizeof(int) * 20);

Because TotalView does not know that p actually points to an array of inte-
gers, here is how you would display the array:

1 Dive on the variable p of type int*.

2 Change its type to int[20]*.

3 Dive on the value of the pointer to display the array of 20 integers.

FIGURE 87: Editing argv

Step 1

Step 2

Step 3
70 TotalView Users Guide Version 5.0

Examining and Changing Data

Working with Opaque Data
Working with Opaque Data

An opaque type is a data type that is not fully specified, is hidden, or
whose declaration is deferred. For example the following C declaration de-
fines the data type for p as pointer to struct foo, which is not yet defined:

struct foo;
struct foo *p;

When TotalView encounters this kind of information, it indicates its data
type by appending <opaque> to the declaration. For example:

struct foo <opaque>

If the type is actually defined in another module, deleting <opaque> from
the data type tells TotalView to find the actual definition for the type.

On platforms where TotalView uses “lazy reading” of the symbol table, you
must force TotalView to read the symbols from the module containing the
full type definition of the opaque type. Use the View > Lookup Fuction
command to force TotalView to read the symbols, as described in “Finding
the Source Code for Functions” on page 127.

Changing the Address of Variables

You can edit the address of a variable in a Variable Window. When you edit
the address, the Variable Window shows the contents of the new location.

You can also enter an address expression, such as 0x10b8 – 0x80.

Changing Types to Display Machine Instructions

Here is how you can display machine instructions in any Variable Window:

1 Select the type string at the top of the Variable Window.

2 Change the type string to be an array of <code> data types, where n
indicates the number of instructions to be displayed. For example:

<code>[n]

TotalView displays the contents of the current variable, register, or area
of memory as machine-level instructions.
Version 5.0 TotalView Users Guide 171

1

7
Examining and Changing Data

Displaying C++ Types
The Variable Window (shown in Figure 82 on page 158) lists the following in-
formation about each machine instruction:

Address The machine address of the instruction.

Value The hexadecimal value stored in the location.

Disassembly The instruction and operands stored in the location.

Offset+Label The symbolic address of the location as a hexadeci-
mal offset from a routine name.

You can also edit the value listed in the Value field for each machine in-
struction.

Displaying C++ Types

Classes

TotalView displays C++ classes and accepts class as a keyword. When you
debug C++, TotalView also accepts the unadorned name of a class, struct,
union, or enum in the type field. TotalView displays nested classes that use
inheritance, showing derivation by indentation.

NOTE Some C++ compilers do not output accessibility information. In these cases,
the information is omitted from the display.

For example, the following figure displays an object of a class c:

FIGURE 88: Displaying C++ Classes That Use Inheritance
72 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying C++ Types
The definition is as follows:

class b {
char * b_val;

public:
b() {b_val = “b value“;}

};

class d : virtual public b {
char * d_val;

public:
d() {d_val = “d value“;}

};

class e {
char * e_val;

public:
e() {e_val = “e value“;}

};

class c : public d, public e {
char * c_val;

public:
c() {c_val = “c value“;}

};

Changing Class Types in C++

TotalView tries to display the correct data when you change the type of a
Variable Window to move up or down the derivation hierarchy.

If a change in the data type also requires a change in the address of the
data being displayed, TotalView asks you about changing the address. For
example, if you edit the type field in class c shown in Figure 89 to class e,
TotalView displays the following dialog box:

Selecting Yes tells TotalView to change the address to ensure that it dis-
plays the correct base class member. Selecting No tells TotalView to display
the memory area as if it were an instance of the type to which it is being
cast, leaving the address unchanged.

Similarly, if you change a data type in the Variable Window so you can cast a
base class to a derived class, and that change requires an address change,
Version 5.0 TotalView Users Guide 173

1

7
Examining and Changing Data

Displaying Fortran Types
the debugger asks you to confirm the operation. For example, Figure 90
shows the dialog posted if you cast from class e to class c:

Displaying Fortran Types

TotalView allows you to display FORTRAN 77 and Fortran 90 data types.

Displaying Fortran Common Blocks

For each common block defined within the scope of a subroutine or func-
tion, TotalView creates an entry in that function’s common block list. The
Stack Frame Pane displays the name of each common block for a function.
The names of common block members have function scope, not global
scope.

TotalView creates a user-defined data type for the common block in which
each of the common block members are fields in the type. If you dive on a
common block name in the Stack Frame Pane, TotalView displays the entire
common block in a Variable Window, as shown in Figure 91.

FIGURE 89: C++ Type Cast to Base Class Dialog Box

FIGURE 90: C++ Type Cast to Derived Class Dialog Box
74 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying Fortran Types
The top-left pane shows a common block list in a Stack Frame Pane. The
bottom right window shows the results of diving on the common block to
see its elements.

If you dive on a common block member name, TotalView searches all com-
mon blocks for a matching member name and displays the member in a
Variable Window.

Normally, TotalView displays the initial address for a common block in the
Variable Window. When the common block is a composite object with sepa-
rate addresses for each component, TotalView displays a Multiple tag to
indicate that it cannot display a single address.

Displaying Fortran Module Data

TotalView tries to locate all data associated with a Fortran module and pro-
vide a single display that contains all of it. For functions and subroutines
defined in a module, TotalView adds the full module data definition to the
list of modules displayed in the Stack Frame Pane.

NOTE TotalView only displays a module if it contains data. Also, the amount of in-
formation that your compiler gives TotalView may restrict what is displayed.

FIGURE 91: Diving into a Common Block List in the Stack Frame Pane
Version 5.0 TotalView Users Guide 175

1

7
Examining and Changing Data

Displaying Fortran Types
Although a function may use a module, TotalView may not be able to deter-
mine if the module was used or what the true names of the variables in the
module are. In this case, either module variables appear as local variables
of the subroutine, or a module appears on the list of modules in the Stack
Frame Pane that contains (with renaming) only the variables used by the
subroutine.

Alternatively, you can view a list of all the known modules by using the
Tools > Fortran Modules command. Like in any Variable Window, you can
dive through an entry to display the actual module data, as shown in
Figure 92.

FIGURE 92: Fortran Modules Window

Dive on module
name to see
Variable
Window
containing
module
variables

Dive on module
variable to see a
Variable
Window with
more detail
76 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying Fortran Types
NOTE If you are using the SUNPro compiler, TotalView can only display module
data if you force it to read the debug information for a file that contains the module
definition or a module function. For more information, see “Finding the Source
Code for Functions” on page 127.

Debugging Fortran 90 Modules

Fortran 90 and Fortran 95 let you place functions, subroutines, and vari-
ables inside modules. These modules can then be USEd (included) else-
where. When modules are USEd, the names in the module become
available in the using compilation unit, unless they have been excluded by
USE ONLY, or renamed. This means that you do not need to explicitly qual-
ify the name of a module function or variable from the Fortran source
code.

When debugging this kind of information, you will need to know the loca-
tion of the function being called. Consequently, TotalView uses the follow-
ing syntax when it displays a function contained within a module:

modulename`functionname

You can use also this syntax in the File > New Program and View >
Lookup Variable commands.

Fortran 90 also introduced the idea of a contained function that is only vis-
ible in the scope of its parent and siblings. There can be many contained
functions in a program, all using the same name. If the compiler gave
TotalView the function name for a nested functions, TotalView displays it
using the following syntax:

parentfunction()`containedfunction

Within contained functions, all of the parent function’s variables are visible
and accessible through a static chain. If the compiler retained information
about the static chain, TotalView can access these variables in the same
way as the compiled code does. Consequently, they are visible in Variable
Windows, and from evaluation points or expressions. If the compiler does
not pass on information about the static chain, TotalView can still find
these up-level variables and display them in Variable Windows, but you will
not be able to use them in evaluation points or expressions.
Version 5.0 TotalView Users Guide 177

1

7
Examining and Changing Data

Displaying Fortran Types
Fortran 90 User-Defined Type

A Fortran 90 user-defined type is similar to a C structure. TotalView displays
a user-defined type as type(name), which is the same syntax used in Fortran
90 to create a user-defined type. For example, here is a code fragment that
defines a variable matrix1 of type(sparse):

TYPE WHOPPER
LOGICAL, DIMENSION(ISIZE) :: FLAGS
DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA
DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA

END TYPE WHOPPER

TYPE(WHOPPER), DIMENSION(:), ALLOCATABLE :: TYP2

TotalView displays this code as shown in Figure 93.

Fortran 90 Deferred Shape Array Type

Fortran 90 allows you to define deferred shape arrays and pointers. The ac-
tual bounds of the array are not determined until the array is allocated, the
pointer is assigned, or (in the case of an assumed shape argument to a
subroutine) the subroutine is called. The type of deferred shape arrays is
displayed by TotalView as type(:), which is the same way that you declared
the array.

When TotalView displays the data for a deferred shape array, it displays the
type used in the definition of the variable and the actual type that this in-

FIGURE 93: Fortran 90 User Defined Type
78 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying Fortran Types
stance of the variable has. The actual type is not editable since you can
achieve the same effect by editing the definition’s type. The following ex-
ample shows the type of a deferred shape rank 2 array of real data with
runtime lower bounds of -1 and 2, and upper bounds of 5 and 10:

Type: real(:,:)
Actual Type: real(-1:5,2:10)

Slice: (:,:)

Fortran 90 Pointer Type

A Fortran 90 pointer type allows you to point to scalar or array types. The
debugger displays pointer types as type,pointer, which is the same syntax
used in Fortran 90 to create a pointer variable.

For example, a pointer to a rank 1 deferred shape array of real data is dis-
played in the Variable Window as:

Type: real(:),pointer

To view the data instead of the pointer variable, dive on the value.

NOTE If you are using the IBM xlf compiler, TotalView cannot determine the rank of
the array from the debugging information. In this case, the type of a pointer to an
array appears as “type(...),pointer”. The actual rank is filled in when you dive
through the pointer to look at the data.

The value of the pointer is displayed as the address of the data to which
the pointer points. This address is not necessarily the array element with
the lowest address.

TotalView implicitly handles slicing operations that set up a pointer or as-
sumed shape subroutine argument so that indices and values it displays in
a Variable Window are the same as you would see in the Fortran code.

For example:

integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do i = 1,10

ia(i) = i
end do
ip => ia(10:1:-2)
Version 5.0 TotalView Users Guide 179

1

7
Examining and Changing Data

Displaying Fortran Types
After diving through the ip pointer, TotalView displays the window shown in
Figure 94.

Notice that the address displayed is not that of the array’s base. Since the
array’s stride is negative, succeeding array elements are at lower absolute
addresses. Consequently, the address displayed is that of the array ele-
ment having the lowest index (which may not be the first displayed element
if you used a slice to display the array with reversed indices).

Displaying Fortran PARAMETERS

A Fortran PARAMETER defines a named constant. Most compilers do not
generate information that TotalView can use. With a few changes to your
program, you can see this kind of information.

If you are using Fortran 90, you can define variables in a module that you
initialize to the value of these PARAMETER constants. For example:

FIGURE 94: Fortran 90 Pointer Value

 Target array ia
 Pointer ip into array ia
 Address of ip(1)
 Values reflect slice
80 TotalView Users Guide Version 5.0

Examining and Changing Data

Displaying Thread Objects
INCLUDE ‘PARAMS.INC’

MODULE CONSTS
SAVE
INTEGER PI_C = PI
...

END MODULE CONSTS

If you compile and link this module into your program, the value of its vari-
ables are visible.

If you are using Fortran 77, you could achieve the same results if you make
the assignments in a common block and then include the block in main().
You would also use a block data subroutine to access this information.

Displaying Thread Objects

On Compaq Tru64 UNIX and IBM AIX systems, TotalView can display infor-
mation about mutexes and conditional variables. In addition, TotalView can
display information on read/writes locks and data keys on IBM AIX. You can
obtain this information by selecting the Tools > Thread Objects com-
mand. After selecting this command, TotalView displays a window that will
either contain two tabs (Compaq) or four tabs (IBM). Figure 95 on page 182
shows some AIX examples.

Diving on an any line within these windows displays a Variable containing
additional information about the item.

Here are some things you should know:

g If you are displaying data keys, many applications initially set keys to
zero (the NULL pointer value). TotalView does not display a key’s infor-
mation, however, until a thread sets a non-NULL value to the key.

g If you select a thread ID within a data key window, you can dive on it us-
ing the View > Dive Thread and View > Dive Thread New commands
to display a Process Window for that thread ID.

The Help contains considerable information on the contents of these win-
dows.
Version 5.0 TotalView Users Guide 181

1

7
Examining and Changing Data

Displaying Thread Objects
FIGURE 95: Thread Objects Pages
82 TotalView Users Guide Version 5.0

Version 5.0
Chapter 8
Examining Arrays
This chapter explains how to examine and change data as you debug your pro-
gram. You will learn about the following:

g Examining and Analyzing Arrays
g Displaying a Variable in All Processes or Threads
g Visualizing Array Data

Examining and Analyzing Arrays

TotalView can quickly display very large arrays in Variable Windows. If an ar-
ray overlaps nonexistent memory, the initial portion of the array is correctly
formatted. If memory is not allocated for an array element, TotalView dis-
plays Bad Address in the element’s subscript.

Displaying Array Slices

TotalView lets you display array subsections by editing the slice field within
an array’s Variable Window. (An array subsection is called a slice.) The slice
field contains placeholders for all array dimensions. For example, here is a
C declaration for a three-dimensional array:

integer ia[10][20][5]

TotalView defines this slice as [:][:][:].

Here is a Fortran 90 deferred shape array definition:

integer, dimension (:,:) :: ia

Its TotalView slice definition is (:,:).
TotalView Users Guide 183

1

8
Examining Arrays

Examining and Analyzing Arrays
As you can see, TotalView displays as many colons (:) as there are array di-
mensions. Initially, the field contains [:] for C arrays or (:) for Fortran arrays.

Slice Definitions
A slice definition has the following form:

lower_bound:upper_bound:stride

This tells TotalView to display every stride element of the array, starting at
the lower_bound and continuing through the upper_bound, inclusive. (A stride
tells TotalView that it should skip over elements and not display them.)

For example, if you specified a slice of [0:9:9] for a 10-element C array,
TotalView displays the first element and last element, which is the ninth el-
ement beyond the lower bound.

If a slice is defined as [lb:ub:stride], TotalView represents the set of values
of i generated by the append statements in the following way:

i = lb
if (stride > 0)

while (i <= ub)
append i
i = i + stride

else
while (i >= ub)

append i
i = i + stride

If stride < 0 and ub > lb, TotalView treats the slice as if it were:

[ub : lb : stride]

(This is an extension to the way Fortran displays slices.) Consequently,
TotalView lets you view a dimension with reversed indexing. For example,
the following definition tells TotalView to display an array beginning at its
last value and moving to its first:

[::-1]

In contrast, Fortran 90 requires that you explicitly enter the upper and
lower bounds when you are reversing the order in which it displays array el-
ements.
84 TotalView Users Guide Version 5.0

Examining Arrays

Examining and Analyzing Arrays
Because the default value for the stride is 1, you can omit the stride (and
the colon that precedes it) if your stride value is 1. For example, the follow-
ing two definitions display array elements 0 through 9:

[0:9:1]
[0:9]

If the lower and upper bound are the same number, you can specify the
slice with just a single number. This number indicates the lower and upper
bound. For example, the following two definitions tell TotalView to display
array element 9:

[9:9:1]
[9]

NOTE The lower_bound, upper_bound, and stride can only be constants.

Here is how you specify a slice for each dimension in a multidimensional
array:

C and C++: [slice][slice]…

Fortran: (slice,slice,…)

Example 1: A slice declaration of [::2] for a C or C++ array (with a de-
fault lower bound of 0) tells TotalView to display elements with even indices
of the array: 0, 2, 4, and so on. However, if this were defined for a Fortran
array (with a default lower bound of 1), TotalView displays elements with
odd indices of the array: 1, 3, 5, and so on.

Example 2: Figure 96 displays a slice of (::9,::9). This definition dis-
plays the four corners of a 10-element by 10-element Fortran array.

Example 3: You can use a stride to invert the order and skip elements.
For example, here is a slice that begins with the upper bound of the array
and display every other element until it reaches the lower bound of the ar-
ray: (::–2). Thus, using (::–2) with a Fortran integer(10) array tells TotalView
to displays the following elements:

(10)
(8)
(6)
...
Version 5.0 TotalView Users Guide 185

1

8
Examining Arrays

Examining and Analyzing Arrays
Example 4: You can simultaneously invert the array’s order and limit
its extent to display a small section of a large array. The following example
specifies a (2:3,7::–1) slice with an integer*4(–1:5,2:10) Fortran array:

After you enter this slice value, TotalView only shows elements in rows 2
and 3 of the array, beginning with column 10 and ending with column 7.

Using Slices in the Variable Command
When you use the View > Lookup Variable command to display a Variable
Window, you can include a slice expression as part of the variable name.
Specifically, if you include an array name followed by a set of slice descrip-

FIGURE 96: Slice Displaying the Four Corners of an Array

FIGURE 97: Fortran Array with Inverse Order and Limited Extent
86 TotalView Users Guide Version 5.0

Examining Arrays

Examining and Analyzing Arrays
tions in the variable dialog box, TotalView initializes the slice field in the
Variable Window to the slice descriptions that you specified.

If you include an array name followed by a list of subscripts in the variable
dialog box, TotalView interprets the subscripts as a slice description rather
than as a request to display an individual value of the array. As a result, you
can display different values of the array by changing the slice expression.

For example, suppose that you have a 10-element by 10-element Fortran
array named small_array, and you want to display element (5,5). Using the
View > Lookup Variable command, you enter small_array(5,5). This sets
the initial slice to (5:5,5:5).

You can tell TotalView to display one of the array’s values by enclosing the
array name and subscripts (that is, the information normally included in a
slice expression) within parentheses, such as (small_array(5,5)). In this
case, the Variable Window just displays the type and value of the element
and does not show its array index. See Figure 98.

FIGURE 98: Variable Window for small_array
Version 5.0 TotalView Users Guide 187

1

8
Examining Arrays

Examining and Analyzing Arrays
The top left Variable Window in this figure shows the information for
(small_array(5:5)). The bottom right Variable Window shows the informa-
tion displayed for small_array(5:5).

Array Data Filtering

You can filter arrays of type character, integer, or floating-point by specify-
ing a filter expression in the Filter field. Your filtering options are:

g Arithmetic comparison to a constant value

g Equal or not equal comparison to IEEE NANs, INFs, and DENORMs

g Within a range of values, inclusive or exclusive

g General expressions

When an element of an array matches the filter expression, the element is
included in the Variable Window display.

You can also sort array elements into an ascending or descending order
and display statistical information about the array.

Filtering by Comparison
Specify arithmetic comparisons to a constant value with the following for-
mat:

operator value

where operator is either a C/C++ or Fortran-style comparison operator, and
value is a signed or unsigned integer constant, or a floating-point number.
Table 13 lists the comparison operators.

TABLE 13: Array Data Filtering Comparison Operators

Comparison C/C++ Operator Fortran Operator
Equal == .eq.

Not equal != .ne.

Less than < .lt.

Less than or equal <= .le.

Greater than > .gt.

Greater than or equal >= .ge.
88 TotalView Users Guide Version 5.0

Examining Arrays

Examining and Analyzing Arrays
The following figure shows an array whose filter is “< 0”. This indicates that
TotalView should only display array elements whose value is less than 0
(zero).

If the value you are using in the comparison is an integer constant,
TotalView uses a signed comparison. If you add a u or U to the constant,
TotalView performs an unsigned comparison.

Filtering for IEEE Values
You can filter IEEE NaN, infinity, or denormalized floating-point values by
specifying a filter in the following form:

operator ieee-tag

The only comparison operators you can use are equal and not equal.

The ieee-tag represents an encoding of IEEE floating-point values, as ex-
plained in the following table:

FIGURE 99: Array Data Filtering by Comparison

TABLE 14: Array Data Filtering IEEE Tag Values

IEEE Tag Value Meaning
$nan NaN (Not a number), either Quiet or Signaling

$nanq Quiet NaN

$nans Signaling NaN

$inf Infinity, either Positive or Negative
Version 5.0 TotalView Users Guide 189

1

8
Examining Arrays

Examining and Analyzing Arrays
Figure 100 shows an example of filtering an array for IEEE values. The bot-
tom left Variable Window shows how TotalView displays the unfiltered array.
Notice the INF, -INF, NANQ, and NANS values. Then other two windows
show filtered displays. The top right window only shows infinite values. The
center window only shows the values of denormalized numbers.

Filtering by Range of Values
Specify range expressions by using the following format:

[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value speci-
fies the highest value to include, separated by a colon. By default, the high
and low values are inclusive. If you specify a > before low-value, the low
value is exclusive. Similarly, a < before the high-value makes it exclusive.

The low-value and high-value must be constants of type integer, unsigned in-
teger, or floating-point. The type of low-value must be the same as the type
of high-value, and low-value must be less than high-value. If low-value and
high-value are integer constants, they can be immediately followed by u or
U, to force an unsigned comparison. Figure 101 shows a filter applied to an
array such that only values equal to or greater than 64 but less than 512
are displayed.

Array Filter Expressions
The filtering capabilities described in the previous sections are those that
are most often used. In some circumstances, you may want to create more
general filter expressions. When you create a filter expression, you are cre-
ating a Fortran or C Boolean expression that TotalView evaluates for every

$pinf Positive Infinity

$ninf Negative Infinity

$denorm Denormalized number, either positive or negative

$pdenorm Positive denormalized number

$ndenorm Negative denormalized number

TABLE 14: Array Data Filtering IEEE Tag Values (cont.)

IEEE Tag Value Meaning
90 TotalView Users Guide Version 5.0

Examining Arrays

Examining and Analyzing Arrays
FIGURE 100: Array Data Filtering for IEEE Values

FIGURE 101: Array Data Filtering by Range of Values
Version 5.0 TotalView Users Guide 191

1

8
Examining Arrays

Examining and Analyzing Arrays
element in the array or the array slice. For example, here is an expression
that displays all array elements whose contents are greater than 0 and less
than 50 or greater than 100 and less than 150.

($value > 0 && $value < 50) ||
($value > 100 && $value < 150)

As TotalView looks at array elements, it sets the $value special variable to
the element’s value. It then evaluates your expression. So, if your array had
15 elements, this expression would be evaluated 15 times.

Notice also the use of the && and || operators to joint parts of the Bool-
ean expression together. You can use any of TotalView’s standard opera-
tors. And, the way in which TotalView computes the results of an
expression is identical to the way it computes values at an evaluation
point. For more information, see “Defining Evaluation Points” on page 216.

NOTE You cannot use any of the IEEE tag values described in “Filtering for IEEE
Values” on page 189 in these kind of expressions.

Filter Comparisons
TotalView lets you filter array information in a variety of ways—and these
ways can overlap. For example, the following two filters produce the same
result:

> 100
$value > 100

Similarly, you obtain the same results with either of the following:

>0:<100
$value > 0 && $value < 100

In both of these, the first method is easier to type than the second. In gen-
eral, you would use the second method when you are creating more com-
plicated expressions.
92 TotalView Users Guide Version 5.0

Examining Arrays

Examining and Analyzing Arrays
Filtering Array Data
The procedure for filtering an array is quite simple: select the Filter field,
enter the array filter expression, and then press Return.

TotalView updates the Variable Window to exclude only the elements that
do not match the filter expression.

TotalView applies the filter expression to each element of the array after
any array slice is applied. TotalView displays the element if its value
matches the filter expression.

If necessary, TotalView converts the array element before evaluating the fil-
ter expression. The following conversion rules apply:

g If the filter operand or array element type is floating-point, TotalView
converts it to a double-precision floating-point value. Extended-preci-
sion values are truncated to double precision. Converting integer or un-
signed integer values to double-precision values may result in a loss of
precision. Unsigned integer values are converted to non-negative dou-
ble-precision values.

g If the filter operand or the array element is an unsigned integer,
TotalView converts the values to an unsigned 64-bit integer.

g If both the filter operand and array element are of type integer, TotalView
converts the values to type 64-bit integer.

These conversions modify a copy of the array’s elements—they never alter
the actual array elements.

To stop filtering an array, delete the contents of the Filter field in the Vari-
able Window and press Return. TotalView will then update the Variable Win-
dow so that it includes all elements.

Sorting Array Data

TotalView lets you sort the displayed array data into ascending or descend-
ing order. (It does not, of course, sort the actual data.)

If you select the Variable Window’s View > Sort > Ascending, TotalView
places all of the array’s elements in ascending order. (See Figure 102 for an
example.)
Version 5.0 TotalView Users Guide 193

1

8
Examining Arrays

Examining and Analyzing Arrays
As you would expect, View > Sort > Descending places array elements
into descending order. The View > Sort > None command returns the ar-
ray to its original order.

The sort commands only manipulate the displayed elements. This means
that if you limit the number of elements by defining a slice or a filter,
TotalView only sorts the result of the filtering and slicing operations.

Array Statistics

The Tools > Statistics command displays a window containing information
about your array. Figure 103 shows an example.

If you have added a filter or a slice, these statistics only describe the infor-
mation that is being displayed; the statistics do not describe the entire un-
filtered array.

The statistics TotalView displays are as follows:

g Checksum

A checksum value for the array elements.

g Count
The total number of displayed array values. If you are displaying a float-
ing-point array, this number does not include NaN or Infinity values.

FIGURE 102: Sorted Variable Window
94 TotalView Users Guide Version 5.0

Examining Arrays

Examining and Analyzing Arrays
g Denormalized Count
A count of the number of denormalized values found in a floating-point
array. This includes both negative and positive denormalized values as
defined in the IEEE floating-point standard. Unlike other floating-point
statistics, these elements participate in the statistical calculations.

g Infinity Count
A count of the number of infinity values found in a floating-point array.
This includes both negative and positive infinity as defined in the IEEE
floating-point standard. These elements do not participate in statistical
calculations.

g Lower Adjacent
This value provides an estimate of the lower limit of the distribution. Val-
ues below this limit are called outliers. The lower adjacent value is the first
quartile value less 1.5 times the difference between the first and third
quartiles.

g Maximum

The largest array value.

FIGURE 103: Array Statistics Window
Version 5.0 TotalView Users Guide 195

1

8
Examining Arrays

Displaying a Variable in All Processes or Threads
g Mean

The average value of array elements.

g Median

The middle value. Half of the array’s values are less than the median and
half are greater than the median.

g Minimum

The smallest array value.

g NaN Count
A count of the number of NaN values found in a floating-point array. This
includes both signaling and quiet NaNs as defined in the IEEE floating-
point standard. These elements do not participate in statistical calcula-
tions.

g Quartiles, First and Third

Either the 25th or 75th percentile values. The first quartile value means
that 25% of the array’s values are less than this value and 75% are
greater than this value. In contrast, the fourth quartile value means that
75% of the array’s values are less than this value and 25% are greater.

g Standard Deviation

The standard deviation for the array’s values.

g Sum

The sum of all of the displayed array’s values.

g Upper Adjacent
This value provides an estimate of the upper limit of the distribution. Val-
ues above this limit are called outliers. The upper adjacent value is the
third quartile value plus 1.5 times the difference between the first and
third quartiles.

g Zero Count
The number of elements whose value is 0.

Displaying a Variable in All Processes or Threads

When you are debugging a parallel program that is running many instances
of the same executable, you usually need to view or update the value of a
variable in all of the processes or threads at once.
96 TotalView Users Guide Version 5.0

Examining Arrays

Displaying a Variable in All Processes or Threads
To display the value of a variable in all of the processes in a parallel pro-
gram, first bring up a Variable Window displaying the value of a variable in
one of the processes. You can now use these commands:

g View > Laminate > Process displays the value of the variable in all of
the processes.

g View > Laminate > Thread displays the value of a variable in all threads
within a single process.

NOTE You cannot simultaneously laminate across processes and threads in the
same Variable Window.

The Variable Window switches to “laminated” mode, and displays the value
of the variable in each process or thread. Figure 104 shows a simple, scalar
variable in each of the processes in some OpenMP programs. Notice that
the first six have a variable in a matching stack frame. The corresponding
variable cannot be found for the seventh thread.

If you decide that you no longer want the pane to be laminated, use the
View > Laminate > None command to delaminate it.

When looking for a matching stack frame, TotalView matches frames start-
ing from the top frame, and considers calls from different memory or stack
locations to be different calls. For example, the following definition of
recurse contains two additional calls to recurse. Each of these generate
nonmatching stack frames.

FIGURE 104: Laminated Scalar Variable
Version 5.0 TotalView Users Guide 197

1

8
Examining Arrays

Displaying a Variable in All Processes or Threads
int recurse (int i, int depth)
{

if (i == 0)
return depth;

if (i&1)
recurse (i-1, depth+1);

else
recurse (i-3, depth+1);

}

If the variables are at different addresses in the different processes or
threads, the address field at the top of the pane displays (Multiple) and
the unique addresses are displayed with each data item, as was shown in
Figure 104.

TotalView also allows you to laminate arrays and structures. When you lam-
inate an array, each element in the array is displayed across all processors.
As with a normal Variable Window, you can use a slice to select elements to
be displayed. Figure 105 shows an example of a laminated array and a lam-
inated structure. You can also laminate an array of structures.

Diving in a Laminated Pane

You can dive through pointers in a laminated Variable Window, and the dive
will apply to the associated pointer in each process or thread.

Editing a Laminated Variable

If you edit a value in a laminated Variable Window, TotalView asks if it
should apply this change to all of the processes or threads or only the one
in which you made a change. This is also an easy way to update a variable
in all of processes
98 TotalView Users Guide Version 5.0

Examining Arrays

Visualizing Array Data
Visualizing Array Data

The TotalView Visualizer works with TotalView to create graphic images of
array data in your programs. This lets you see your data in one glance and
quickly find problems with it as you debug your programs.

You can execute the Visualizer from within TotalView or you can run it from
the command line to visualize data dumped to a file in a previous TotalView
session.

FIGURE 105: Laminated Array and Structure

 Laminated array
 Element [0] for each of the processes
 Structure elements for one process
Version 5.0 TotalView Users Guide 199

2

8
Examining Arrays

Visualizing Array Data
For information about running the TotalView Visualizer, see Chapter 10, “Vi-
sualizing Data” on page 247.

Visualizing a Laminated Variable Window

You can export data from a laminated Variable Window to the Visualizer by
using the Tools > Visualize command. When visualizing laminated data,
the process (or thread) index is the first axis of the visualization. This
means that e you must use one fewer data dimension than you normally
would. If you do not want the process/thread axis to be significant, you can
use a normal Variable Window since all of the data must necessarily be in
one process.
00 TotalView Users Guide Version 5.0

Version 5.0
Chapter 9
Setting Action Points
This chapter explains how to use action points. TotalView supports four kinds of
action points: breakpoints, barrier breakpoints, evaluation points, and watch-
points. A breakpoint stops execution of processes and threads that reach it. A
barrier breakpoint holds each thread and process that reaches it until all threads
and processes from the group reach it. An evaluation point causes a code frag-
ment to execute when it is reached. A watchpoint lets you monitor a location in
memory and stop execution when the value stored in memory changes.

Topics in this chapter are:

g Action Points Overview
g Setting Breakpoints and Barriers
g Defining Evaluation Points
g Using Watchpoints
g Saving Action Points to a File

g Evaluating Expressions
g Writing Code Fragments

Action Points Overview

Actions points allow you to specify an action that will be performed when a
thread or process reaches a source line or machine instruction in your pro-
gram. Here are the different kinds of action points that you can use:

g Breakpoints

When a thread encounters a breakpoint, it stops at the breakpoint along
with the other threads in the process. You can also arrange for other re-
lated processes to stop when a breakpoint is hit.
Breakpoints are the simplest action point.
TotalView Users Guide 201

2

9
Setting Action Points

Action Points Overview
g Barrier breakpoints

Barrier breakpoints are similar to simple breakpoints, differing in that
they are used to synchronize a group of processes or threads. Barrier
breakpoints work together with the TotalView hold and release feature.
TotalView supports thread barrier and process barrier breakpoints.

g Evaluation points

An evaluation point is a breakpoint that has a code fragment associated
with it. When a thread or process encounters an evaluation point, it exe-
cutes this code. You can use evaluation points in several different ways,
including conditional breakpoints, thread-specific breakpoints, count-
down breakpoints, and patching code fragments into and out of your
program.

g Watchpoints

A watchpoint tells TotalView that it should either stop the thread so that
you can interact with your program (unconditional watchpoint) or evalu-
ate an expression (conditional watchpoint).

All action points share some common properties. They:

g Can be enabled or disabled independently. A disabled action still exists;
however, when your program reaches a disabled point, the program con-
tinues executing.

g Can be shared across multiple processes, or set in individual processes.

g Apply to the process, so in a multithreaded process, the action point
applies to all of the threads.

g Are assigned unique action point ID numbers. They appear in several
places, including the Root Window, the Action Points Pane of the Process
Window, and the Action Point > Properties dialog box.

Each type of action point has a unique symbol. Figure 106 shows examples
of some enabled and disabled action points:

The icon indicates that there are one or more assembler-level ac-
tion points associated with the source line.
02 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
Setting Breakpoints and Barriers

TotalView has several options for setting breakpoints. You can set:

g Source-level breakpoints

g Machine-level breakpoints

g Breakpoints that are shared among all processes in multiprocess pro-
grams

You can also control whether or not TotalView stops all processes in the
control group when a single member reaches a breakpoint.

Setting Source-Level Breakpoints

Typically, you set and clear breakpoints before you start a process. To set a
source-level breakpoint, select a boxed line number in the tag field of the
Process Window. (A boxed line number indicates that the line is associated
with executable code.) A icon lets you know that a breakpoint is set
immediately before the source statement.

You can also set a breakpoint while a process is running by selecting a
boxed line number in the tag field of the Process Window. If you set a
breakpoint while the process is running, TotalView temporarily stops the
process so it can insert the breakpoint. After the breakpoint is set, the pro-
cess resumes executing.

Figure 106: Action Point Symbols

 Assembler-level action point
 Breakpoint
 Disabled breakpoint
 Barrier breakpoint

Disabled barrier breakpoint
Evaluation point
Disabled evauation point
Version 5.0 TotalView Users Guide 203

2

9
Setting Action Points

Setting Breakpoints and Barriers
Selecting Ambiguous Source Lines
If you are using C++ templates, a single source line could generate multi-
ple function instances. If you attempt to set a source-level breakpoint by
selecting a line number in a function template, and that line number has
more than one instantiation, TotalView will prompt you with an Ambiguous
Line dialog box, as shown in Figure 107.

Here is how you use this dialog box:

1 Select functions by checking:

All, which selects all functions.
None, which deselects all functions.
Individual check boxes, which lets you select and deselect functions.

2 Select one of the following:

Toggle, which changes the state of the action points.
Enable, which enables the action points, or creates breakpoints or bar-
rier breakpoints for any that did not already exist.
Disable, which disables the action point.
Delete, which deletes breakpoints or barrier breakpoints, and disables
others.

3 Select the OK button or press Return to perform the action.

Figure 107: Ambiguous Line Dialog Box
04 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
Toggling Breakpoints at Locations

You can toggle a breakpoint at a specific function or source-line number
without having to first find the function or source line in the Source Pane
by using the following procedure:

1 Invoke the Action Point > At Location command. The At Location di-
alog box appears (as shown in Figure 108).

2 Type the name of the function or a source-line number.

Entering a function name tells TotalView to toggle the breakpoint at the
function’s first executable source line. Entering a source-line number
toggles the breakpoint at the source line in the current source file.

3 Select OK.

Ambiguous Locations
If you enter an ambiguous function name with the Action Point > At
Location command, TotalView displays one of its Ambiguous Function
Name dialog boxes. See Figure 109.

The procedure for resolving ambiguous function names is similar to the
procedure described in “Selecting Ambiguous Source Lines” on page 204.

Displaying and Controlling Action Points

The Action Point > Properties dialog box lets you set and control an action
point. Figure 110 on page 206 shows this dialog box. It also allows you to
change an action point’s type among one of the three kinds: breakpoint,
barrier point, and evaluation point. This box also lets you define what will
happen to other threads and processes when execution reaches a break-
point or barrier point.

Figure 108: Action Point > At Location Dialog Box
Version 5.0 TotalView Users Guide 205

2

9
Setting Action Points

Setting Breakpoints and Barriers
The following sections explain how you can control action points by using
the Process Window and the Properties dialog box.

Figure 109: Ambiguous Function Dialog Box

Figure 110: Action Point > Properties Dialog Box
06 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
Disabling
TotalView can retain an action point’s definition but ignore the action point
during execution. That is, disabling an action point does not remove it.
TotalView remembers that an action point exists for the line, but ignores it
as long as it is disabled.

You can disable an action point by:

g Deselecting Enable action point in the Properties dialog box.

g Selecting the or sign in the Action Points Pane.

Deleting
You can permanently remove an action point by selecting the or

 sign in the tag field or selecting the Delete button in the Action
Point > Properties dialog box.

To delete all breakpoints and barrier points, select the Action Point >
Delete All command.

Enabling
You can activate an action point that was previously disabled by selecting
the dimmed , , or sign in the process or Action Points
Pane, or by selecting Enable action point in the Properties dialog.

Suppressing
You can tell TotalView to ignore action points and prevent the creation of
additional action points by selecting the Action Point > Suppress All com-
mand.

When you suppress action points, you disable them. If action points are
suppressed, you cannot update existing action points or create new ones.

You can make previously suppressed action points active and allow the cre-
ation of new ones by reselecting the Action Point > Suppress All com-
mand.
Version 5.0 TotalView Users Guide 207

2

9
Setting Action Points

Setting Breakpoints and Barriers
Setting Machine-Level Breakpoints

To set a machine-level breakpoint, you must first display assembler code or
source interleaved with assembler. (Refer to “Examining Source and Assembler
Code” on page 129 for information.) You can now select the tag field oppo-
site an instruction. The tag field must contain a gridget ()—the gridget
indicates the line is the beginning of a machine instruction. Since instruc-
tion sets on some platforms support variable-length instructions, you may
see multiple lines associated with a single gridget. The icon appears,
indicating that the breakpoint occurs before the instruction executes.

When the Source Pane displays source interleaved with assembler, source
statements are treated as if they were comments: they are not treated as
executable statements. (This is shown in Figure 111.) Because they are
treated as comments, you cannot set breakpoints on them. If you set a
breakpoint on the first instruction after a source statement, however, you
are actually creating a source-level breakpoint.

If you set machine-level breakpoints on one or more instructions that are
part of a single source line and then display source code in the Source
Pane, TotalView displays an icon (see Figure 106) on the line num-
ber. To see the specific breakpoints, you must display assembler or assem-
bler interleaved with source code.

When a process reaches a breakpoint, TotalView:

g Suspends the process.

g Displays the PC arrow icon () over the stop sign to indicate that the
PC currently points to the breakpoint. (See Figure 112.)

g Displays At Breakpoint in the Process Window title bar and other win-
dows.

g Updates the Stack Trace and Stack Frame Panes and Variable Windows.

Figure 111: Breakpoint at Assembler Instruction
08 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
Breakpoints for Multiple Processes

In multiprocess programs, you can set breakpoints in the parent process
and child processes before you start the program and at any time during its
execution. To do this, use the Action Point > Properties dialog box, as
shown in Figure 113. This dialog box provides the following controls for
setting breakpoints:

g When Hit, Stop

When your thread hits a breakpoint, TotalView can also stop the thread’s
control group or the process in which it is running.

g Plant in share group
If selected, TotalView enables the breakpoint in all members of this
thread’s share group at the same time. If this is not selected, you must
individually enable and disable breakpoints in each share group member.

You can control the default setting of these check boxes using X resources
or command-line options. See Figure 113.

The action point ID and other information are displayed at the top of the
dialog box.

You can preset many of the properties in this dialog box by using TotalView
preferences, as shown in Figure 114 on page 210.

You can find additional information about this dialog box within the Help.

In addition to the controls in the Properties dialog box, you can place an
expression in the expression box to control the behavior of control group
members and share group members. Refer to “Writing Code Fragments” on
page 234 for more information.

Figure 112: Assembler and Source Interleaved
Version 5.0 TotalView Users Guide 209

2

9
Setting Action Points

Setting Breakpoints and Barriers
Figure 113: Action Point > Properties Dialog Box

Figure 114: File > Properties: Action Points Page
10 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
If you are trying to synchronize your program’s threads, you will want to set
a barrier point. For more information, see “Barrier Breakpoints” on page 212.

Breakpoint When Using fork()/execve()

You must link with the dbfork library to debug programs that call fork() and
execve(). See “Compiling Programs” on page 15.

Processes That Call fork()
By default, TotalView places breakpoints in all processes in the share
group. When any of these processes reach a breakpoint, TotalView stops all
processes in the control group. Said in a different way, TotalView stops the
control group containing the share group. This means that TotalView will be
stopping more than one share group. (For more information, see “Examin-
ing Groups” on page 135.) To override these defaults:

1 Dive into the tag field to display the Action Point > Properties dialog
box.

2 Deselect the Plant in share group checkbox and make sure that the
Group radio button is selected.

Processes That Call execve()
Breakpoints that are shared by a parent and children with the same execut-
able do not apply to children with different executables. To set the break-
points for children that call execve():

1 Set the breakpoints and breakpoint options desired in the parent
and the children that do not call execve().

2 Start the multiprocess program by displaying the Group > Go com-
mand. When the first child calls execve(), TotalView displays the fol-
lowing message:

Process name has exec’d name.
Do you want to stop it now?

3 Answer Yes. TotalView opens a Process Window for the process. (If
you answer No, TotalView will not allow you to set breakpoints.)

4 Set breakpoints for the process. After you set breakpoints for the
first child using this executable, TotalView does not prompt when
other children call execve() to use it. Therefore, if you do not want to
Version 5.0 TotalView Users Guide 211

2

9
Setting Action Points

Setting Breakpoints and Barriers
share the breakpoints among other children using the same execut-
able, dive into the breakpoints and set the breakpoint options.

5 Select the Group > Go command.

Example: Multiprocess Breakpoint
The following partial program illustrates the different points at which you
can set breakpoints in a multiprocess program:

1 pid = fork();
2 if (pid == -1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

The following table shows the results of setting a breakpoint at different
places.

Barrier Breakpoints

A barrier breakpoint is similar to a simple breakpoint, differing in that it
holds processes and threads that reach the barrier point. Other processes
and threads continue to run. TotalView holds each until all the processes or
threads defined in the barrier point reach this same place. When the last
process or thread reaches a barrier point, TotalView releases all the held
processes or threads.

Table 15: Setting Breakpoints in Multiprocess Programs

Line Number Result
1 Stops the parent process before it forks.

2 Stops both the parent and child processes (if the child
process was successfully created).

3 Stops the parent process if fork() failed.

5 Stops the child process.

7 Stops the parent process.
12 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
Barrier Breakpoint States
Processes and threads at a barrier point are held or stopped, as follows:

Held A process or thread that is held cannot resume execu-
tion until all the processes or threads in its group are
at the barrier, or until you manually release it. The var-
ious go and step commands from the Group, Process,
and Thread menus have no effect on held processes.

Stopped When all processes in the group reach a barrier point,
TotalView automatically releases them. They remain
stopped at the barrier point until you tell them to re-
sume executing.

You can manually release held processes and threads with the Hold and

Release commands contained within the Group, Process, and Thread
menus. When you manually release a process, the go and step commands
become available again.

You can reuse the Hold command to again toggle the hold state of the pro-
cess or thread. See “Holding and Releasing Processes and Threads” on page 134
for more information.

Setting a Barrier Breakpoint
You can set a barrier breakpoint by using the Action Point > Set Barrier
command or from the Action Point > Properties dialog box which is shown
in Figure 115. (Right-clicking on the line also allows you to set a barrier.)

Barrier breakpoints are most often used to synchronize a set of threads.
When a thread reaches a barrier, it stops, just as it does for a breakpoint.
The difference is that TotalView prevents—that is, holds—each thread
reaching the barrier from responding to resume commands (for example,
step, next, or go) until all threads in the affected set arrive at the barrier.
When all threads reach the barrier, TotalView considers the barrier to be sat-
isfied and releases them. They are just released; they are not continued. That is,
they are left stopped at the barrier. If you now continue the process, those
threads stopped at the barrier also run. This is in addition to any other
threads that were not affected with the barrier.
Version 5.0 TotalView Users Guide 213

2

9
Setting Action Points

Setting Breakpoints and Barriers
If a process is stopped and then continued, the held threads, including the
ones waiting at an unsatisfied barrier, do not run. Only unheld threads run.

The When Hit, Stop radio buttons indicate what other threads TotalView
should stop when execution reaches the breakpoint, as follows:

After all processes or threads reach the barrier, TotalView releases all held
threads. (Released means that these threads and processes can now run.)

The When Done, Stop radio buttons tell TotalView what else it should
stop, as follows.

Figure 115: Action Point > Properties Dialog Box

Scope TotalView will:
Group Stop all threads in the current thread’s control group.
Process Stop all threads in the current thread’s process.
Thread Only stop this thread.

Scope TotalView will:
Group Stop all threads in the current thread’s control group.
Process Stop all threads in the current thread’s process.
Thread Only stop this thread.
14 TotalView Users Guide Version 5.0

Setting Action Points

Setting Breakpoints and Barriers
For even more control over what TotalView will stop, you can indicate a sat-
isfaction set. This set indicates which threads must be held before TotalView
will release the group of threads. That is, the barrier is satisfied when
TotalView has held all of the indicated threads. Use the Satisfaction group
items to tell TotalView that the satisfaction set consists of all threads in the
current thread’s Share, Workers, or Lockstep group.

When you set a barrier point, TotalView places it in every process within the
share group.

If you run one of the processes or threads in a group and it hits a barrier
point, you will see an H next to the process or thread name in the Root
Window and the word [Held] in the title bar in the main Process Window.
Barrier points are always shared.

If you create a barrier and all the processes threads are already at that lo-
cation, TotalView does not hold any of them. However, if you create a bar-
rier and all of the processes and threads are not at that location, TotalView
holds the ones that already there, and does not hold the ones that are not
there yet.

Releasing Processes from Barrier Points
TotalView automatically releases processes and threads from a barrier
point when they hit that barrier point and all other processes or threads in
the group are already held at it.

Deleting a Barrier Point
You can delete a barrier point in two ways:

g Using the Action Point > Properties dialog box.

g Clicking on the icon in the line number area.

Changes When Setting and Clearing a Barrier Point
Setting a barrier point at the current PC for a stopped process or thread
holds the process there. If, however, all other processes or threads affected
by the barrier point are at the same PC, TotalView does not hold them. In-
stead, TotalView treats the barrier point as if it was an ordinary breakpoint.
Version 5.0 TotalView Users Guide 215

2

9
Setting Action Points

Defining Evaluation Points
All processes and threads that are held and which have threads at the bar-
rier point are released when you clear the barrier point. They remain
stopped but are no longer held. You can clear the barrier breakpoint in the
Action Point > Properties dialog box by clicking on Clear at the bottom of
the dialog box.

Defining Evaluation Points

TotalView lets you define evaluation points. These are action points at which
you have added a code fragment that TotalView will execute. You can write
the code fragment in C, Fortran, or assembler.

NOTE Assembler support is currently available on the Compaq Tru64 UNIX, IBM
AIX, and SGI IRIX operating systems. Compiled expressions must be enabled to use
assembler constructs.

Here are some of the ways you can use evaluation points:

g A fragment can also include instructions that stop a process and its rela-
tives. If the code fragment can make a decision whether it should stop
execution, it is called a conditional breakpoint.

g You can also use evaluation points to test potential fixes for your pro-
gram.

g You can set values of your program’s variables.

g You can automatically send data to the Visualizer. This can produce ani-
mated displays of the changes in your program’s data.

You can set an evaluation point at any source line that generates execut-
able code (marked with a boxed line number in the tag field). You can also
define evaluation points on machine-level instructions. Stated in a differ-
ent way, if you can set a breakpoint, you can change it into an evaluation
point.

At each evaluation point, the code fragment in the evaluation point is exe-
cuted before the code on that line. Typically, your program will then exe-
cute the program instruction at which you had set the evaluation point. But
your code fragment can modify this behavior:
16 TotalView Users Guide Version 5.0

Setting Action Points

Defining Evaluation Points
g It can include a branching instruction (such as goto in C or Fortran). The
instruction can transfer control to a different point in the target pro-
gram, enabling you to test program patches.

g It can contain an intrinsic statement. These special TotalView statements
let you stop execution, create barriers, and countdown breakpoints. For
more information on these statements, refer to Table 19 “Built-In State-
ments Used in Expressions” on page 236.

TotalView evaluates code fragments in the context of the target program.
This means that you can refer to program variables and branch to places in
your program.

For complete information on what you can include in code fragments, refer
to “Writing Code Fragments” on page 234.

Evaluation points only modify the processes being debugged—they do not
modify the source program or create a permanent patch in the executable.
If you save a program’s evaluation points, however, TotalView reapplies
them whenever you start a debugging session for that program. To save
your evaluation points, refer to “Saving Action Points to a File” on page 232.

NOTE You should stop a process before setting an evaluation point. This ensures
that the evaluation point is set in a stable context in the program.

Setting Evaluation Points

To set an evaluation point:

1 Display the Action Point > Properties dialog box. You can do this, for
example, by right-clicking on a icon and selecting Properties
or by selecting a line and then invoking the command from the menu
bar.

2 Select the Evaluate button.

3 Select the button (if it is not already selected) for the language in
which you will code the fragment.

4 Type the code fragment. For information on supported C, Fortran,
and assembler language constructs, refer to “Writing Code Fragments”
on page 234.
Version 5.0 TotalView Users Guide 217

2

9
Setting Action Points

Defining Evaluation Points
5 For multiprocess programs, decide whether to share the evaluation
point among all processes in the program’s share group. By default,
TotalView selects the Plant in share group check box for multiprocess
programs, but you can override this by deselecting it.

6 Select the OK button to confirm your changes. If the code fragment
has an error, TotalView displays an error message. Otherwise, it pro-
cesses the code, closes the dialog box, and places an icon in
the tag field.

Creating Conditional Breakpoint Examples

Here are some examples of conditional breakpoints code:

g To define a breakpoint that is reached whenever variable i is greater than
20 but less than 25:

if (i > 20 && i < 25)
$stop;

g To define a breakpoint that will stop execution every 10th time that
TotalView executes the $count statement:

$count 10

g To define a breakpoint with a more complex expression, consider:
$count i * 2

When the variable i equals 4, the process stops the 8th time it executes
the $count statement. After the process stops, the expression is reeval-
uated. If i now equals 5, the next stop occurs after the process executes
the $count statement 10 more times.

For complete descriptions of the $stop and $count statements, refer to
“Built-In Statements” on page 236.

Patching Programs

You can use expressions in evaluation points to patch your code if you use
the goto (C) and GOTO (Fortran) statements to jump to a different program
location. This lets you:

g Branch around code that you do not want your program to execute.

g Add new pieces of code.

In many cases, correcting an error means that you will do both operations:
you patch out incorrect lines and patch in corrections.
18 TotalView Users Guide Version 5.0

Setting Action Points

Defining Evaluation Points
Conditionally Patching Out Code
The following example contains a logic error where the program derefer-
ences a null pointer:

1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

The error occurs because the routine calling this function assumes that the
value of error_ptr can be 0. The check_for_error() function, however, as-
sumes that error_ptr is not null, which means that line 3 can dereference a
null pointer.

You can correct this error by setting an evaluation point on line 3 and en-
tering:

if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 is not executed.

Patching in a Function Call
Instead of routing around the problem, you could patch in a printf() state-
ment that displays the value of the global_error variable created in the
preceding program. You would set an evaluation point on line 4 and enter:

printf ("global_error is %d\n", global_error);

This code fragment is executed before the code on line 4; that is, it is exe-
cuted before global_error is set to 0.

Correcting Code
The next example contains a coding error: the function returns the maxi-
mum value instead of the minimum value:

1 int minimum (int a, int b)
2 {
3 int result; /* Return the minimum */
4 if (a < b)
5 result = b;
6 else
Version 5.0 TotalView Users Guide 219

2

9
Setting Action Points

Defining Evaluation Points
7 result = a;
8 return (result);
9 }

You can correct this error by adding the following code to an evaluation
point at line 4:

if (a < b) goto 7; else goto 5;

This effectively replaces the if statement on line 4 with the statement en-
tered at the evaluation point.

Interpreted vs. Compiled Expressions

On most platforms, TotalView executes interpreted expressions. TotalView
can also execute compiled expressions on the Compaq Tru64 UNIX, IBM
AIX, and SGI IRIX platforms. On Compaq Tru64 UNIX and IBM AIX plat-
forms, compiled expressions are enabled by default.

You can enable or disable compiled expressions by using X resources or
command-line options. Refer to totalview*compileExpressions on page
277. See Appendix B “Operating Systems” on page 321 to find out how
TotalView handles expressions on specific platforms.

NOTE Using any of the following intrinsics means that TotalView interprets the
evaluation point instead of compiling it: $visualize, $nid, $clid, $processduid, $duid,
$tid, and $systid. In addition, $pid forces interpretation on AIX.

Interpreted Expressions
TotalView sets a breakpoint in your code and executes the evaluation
point. Since TotalView is executing the expression, interpreted expressions
run slower (and possibly much slower) than compiled expressions. With
multiprocess programs, interpreted expressions run even more slowly be-
cause processes may need to wait for TotalView to execute the expression.

When you are debugging remote programs, interpreted expressions always
run more slowly because TotalView on the host, not the TotalView debugger
server (tvdsvr) on the client, executes the expression. For example, an in-
terpreted expression could require that 100 remote processes wait for the
TotalView debugger process on the host machine to evaluate one inter-
20 TotalView Users Guide Version 5.0

Setting Action Points

Defining Evaluation Points
preted expression. In contrast, if TotalView compiles the expression, it is
evaluated on each remote process.

If the expression contains $stop, TotalView stops evaluating the expression
and stops the process when it executes the $stop intrinsic.

NOTE Whenever a thread hits an interpreted patch point, TotalView stops execu-
tion. This means that TotalView will create a new set of lockstep groups. Conse-
quently, if goal threads contain interpreted patches, the results are unpredictable.

Compiled Expressions
TotalView compiles, links, and patches expressions into the target process.
by replacing an instruction with a “branch out” instruction, relocating the
original instruction, and appending the expression. This means that the
target thread executes this code with the result being that evaluation
points and conditional breakpoints execute very quickly. (Note that condi-
tional watchpoints are always interpreted.) And, more importantly, this
code does not need to communicate with the TotalView host process until
it needs to.

If the expression executes a $stop intrinsic, TotalView stops executing the
compiled expression. At this time, you can single-step through it and con-
tinue executing the expression as you would the rest of your code. See
Figure 116.

If you plan to use compiled expressions, you may need to think about allo-
cating patch space. For more information, see “Allocating Patch Space for Com-
piled Expressions” on page 221.

Allocating Patch Space for Compiled Expressions

TotalView must allocate or find space in your program to hold the code
fragments generated by compiled expressions. Since this patch space is
part of your program’s address space, the location, size, and allocation
scheme that TotalView uses may conflict with your program. As a result,
you may need to change how TotalView allocates this space.
Version 5.0 TotalView Users Guide 221

2

9
Setting Action Points

Defining Evaluation Points
You can choose one of the following patch space allocation schemes:

g Dynamic patch space allocation: Tells TotalView to find the space for
the code fragment dynamically.

g Static patch space allocation: Tells TotalView to use a statically allo-
cated area of memory.

Dynamic Patch Space Allocation
Dynamic patch space allocation means that TotalView dynamically allocates
patch space for code fragments. If you do not specify the size and location
for the patch space, TotalView allocates 1 MB. TotalView creates this space
using system calls.

TotalView allocates memory for read, write, and execute access within the
following addresses:

Figure 116: Stopped Execution of Compiled Expressions

Table 16: Dynamic Patch Space Allocation Default Addresses

Platform Address range
Compaq Tru64 UNIX 0xFFFFF00000 – 0xFFFFFFFFFF

IBM AIX 0xCFF00000 – 0xCFFFFFFF

SGI IRIX (–n32) 0x4FF00000 – 0x4FFFFFFF

SGI IRIX (–64) 0x8FF00000 – 0x8FFFFFFF
22 TotalView Users Guide Version 5.0

Setting Action Points

Defining Evaluation Points
NOTE You can only allocate dynamic patch space for these machines.

If the default address range conflicts with your program, or you would like
to change the size of the dynamically allocated patch space, you can spec-
ify the dynamically allocated:

g Patch space base address by using the –patch_area_base command-line
option or the X resource totalview*patchAreaAddress on page 280.

g Patch space length by using the –patch_area_length command-line op-
tion or the X resource totalview*patchAreaLength on page 280.

Static Patch Space Allocation
TotalView can statically allocate patch space if you add a specially named
array to your program. You can then specify the size of the patch space.
When TotalView needs to use patch space, it uses this space created for
this array.

To include a 1 MB statically allocated patch space in your program, add the
TVDB_patch_base_address data object in a C module. Because this object
must be 8-byte aligned, declare it as an array of doubles. For example:

/* 1 megabyte == size TV expects */
#define PATCH_LEN 0x100000
double TVDB_patch_base_address [PATCH_LEN / sizeof(double)]

If you need to use a static patch space size that differs from the 1 MB de-
fault, you must use assembler language. Table 17 shows sample assembler
code for three platforms that support compiled patch points.

Table 17: Static Patch Space Assembler Code

Platform Assembler Code
Compaq Tru64 UNIX .data

.align 3

.globl TVDB_patch_base_address

.globl TVDB_patch_end_address
TVDB_patch_base_address:

.byte 0x00 : PATCH_SIZE
TVDB_patch_end_address:
Version 5.0 TotalView Users Guide 223

2

9
Setting Action Points

Using Watchpoints
Here is how you would use the static patch space assembler code:

1 Use an ASCII editor and place the assembler code into a file named
tvdb_patch_space.s.

2 Replace the PATCH_SPACE tag with the decimal number of bytes you
want. This value must be a multiple of 8.

3 Assemble the file into an object file by using a command such as:

cc -c tvdb_patch_space.s
On SGI IRIX, use –n32 or –64 to create the correct object file type.

4 Link the resulting tvdb_patch_space.o into your program.

Using Watchpoints

TotalView lets you monitor the changes that occur to memory locations by
creating a special kind of action point called a data watchpoint, or just watch-
point for short. Watchpoints are most often used to find a statement in your
program that is writing to a “stray” memory location. This can occur, for ex-
ample, when processes share memory and more than one process writes
to the same location. It can also occur when your program writes off the
end of an array or when your program has a dangling pointer.

IBM AIX .csect .data{RW}, 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address

TVDB_patch_base_address:
.space PATCH_SIZE

TVDB_patch_end_address:

SGI IRIX .data
.align 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address

TVDB_patch_base_address:
.space PATCH_SIZE

TVDB_patch_end_address:

Table 17: Static Patch Space Assembler Code (cont.)

Platform Assembler Code
24 TotalView Users Guide Version 5.0

Setting Action Points

Using Watchpoints
TotalView watchpoints are called modify watchpoints because TotalView only
triggers a watchpoint when your program modifies a memory location. If a
program writes a value into a location that is the same as what is already
stored, TotalView does not trigger the watchpoint because the location’s
value did not change.

For example, if location 0x10000 has a value of zero and your program
writes a zero into this location, TotalView does not trigger the watchpoint
even though your program wrote data into the memory location. See “Trig-
gering Watchpoints” on page 228 for more details on when watchpoints trig-
ger.

TotalView also lets you create conditional watchpoints. A conditional watch-
point is similar to an evaluation point in that TotalView will evaluate an ex-
pression when the watchpoint triggers. You can use conditional
watchpoints for a number of purposes. For example, you can use it to test
if a value changes its sign—that is, it becomes positive or negative—or if a
value moves above or below some threshold value.

Architectures

The number of watchpoints, their size, and alignment restrictions differ
from platform to platform. (This is because TotalView relies on the operat-
ing system and its hardware to implement data watchpoints.)

NOTE Watchpoints are not available on Alpha Linux and HP.

The following list describes constraints that exist on each platform:

Compaq Tru64 Tru64 places no limitations on the number of watch-
points that you can create, and there are no align-
ment or size constraints. However, watchpoints
cannot overlap, and you cannot create a watchpoint
on an already write-protected page.

Watchpoints use a page protection scheme. Because
the page size is 8,192 bytes, watchpoints can degrade
performance if your program frequently writes to
pages containing watchpoints.
Version 5.0 TotalView Users Guide 225

2

9
Setting Action Points

Using Watchpoints
IBM AIX You can create one watchpoint on AIX 4.3.3.0-2 (AIX
4.3R) or later systems. (AIX 4.3R is available as APAR
IY06844.) This watchpoint cannot be longer than 8
bytes and it must be aligned within an 8-byte bound-
ary.

IRIX6 MIPS Watchpoints are implemented on IRIX 6.2 and later
operating systems. These systems allow you to create
about 100 watchpoints. There are no alignment or
size constraints. However, watchpoints cannot over-
lap.

Linux x86 You can create up to four watchpoints and each must
be 1, 2, or 4 bytes in length, and a memory address
must be aligned for the byte length. That is, a 4-byte
watchpoint must be aligned on a 4-byte address
boundary, and a 2-byte watchpoint must be aligned
on a 2-byte boundary, etc.

Solaris SPARC Watchpoints are implemented on Solaris 2.6 or later
operating systems. These operating system allow you
to create hundreds of watchpoints, and there are no
alignment or size constraints. However, watchpoints
cannot overlap.

Typically, a debugging session does not use many watchpoints. In most
cases, only one memory location at a time is being monitored. So, restric-
tions on the number of values you can watch are seldom an issue.

Creating Watchpoints

Watchpoints are created by selecting Tools > Watchpoint from within a
Variable Window (If your platform does not support data watchpoints, this
menu item is dimmed.)

After selecting this command. TotalView displays the dialog box shown in
Figure 117.

Using this dialog box, you can create an unconditional or conditional
watchpoint. The watchpoint you will set is set for the entire variable, not
just for an element of it. For example, when you invoke this dialog box, the
Address field is set to the variable’s location in memory. If you want to look
26 TotalView Users Guide Version 5.0

Setting Action Points

Using Watchpoints
at only one element of a structure or an array, simply dive on the element
in the Variable Window before setting the watchpoint.

For information on the fields in this dialog box, see the online help.

Displaying Watchpoints
The watchpoint entry, indicated by UDWP for Unconditional Data Watch-
point and CDWP for Conditional Data Watchpoint, displays the action point
ID, the amount of memory being watched, and the location being watched.

If you dive into a watchpoint, TotalView displays the Watchpoint
Properties dialog box.

If you select a watchpoint, TotalView will toggle the enabled/disabled state
of the watchpoint.

Figure 117: Tools > Watchpoint Dialog Boxes
Version 5.0 TotalView Users Guide 227

2

9
Setting Action Points

Using Watchpoints
Watching Memory

A watchpoint tracks a memory location: it does not track a variable. This
means that a watchpoint may not perform as you would expect it to when
watching stack or automatic variables. For example, assume that you cre-
ate a watchpoint to watch a variable in a subroutine. When control exits
from the subroutine, the memory allocated on the stack for this subroutine
is deallocated. At this time, TotalView is watching unallocated stack mem-
ory. And, when the stack memory is reallocated to a new stack frame,
TotalView is still watching this same position. This means that TotalView
triggers the watchpoint when something changes this newly allocated
memory.

Also, if your program reinvokes a subroutine, it usually executes at a differ-
ent part of the stack. So, if the subroutine changes, this change may not be
seen because the variable is at a different memory location.

All of this means that in most circumstances, you cannot place a watch-
point on a stack variable. If you need to watch a stack variable, you will
need to create and delete the watchpoint each time your program invokes
the subroutine.

NOTE In some circumstances, a subroutine will always be called from the same lo-
cation. This means that its local variables will probably be in the same location, so it
may be worth trying.

If you place a watchpoint on a global or static variable that is always in-
voked by reference (that is, the value of a variable is always accessed using
a pointer to the variable), you can set a watchpoint on it because the mem-
ory locations used by the variable are not changing.

Triggering Watchpoints

When a watchpoint triggers, the thread’s program counter (PC) points to
the instruction following the instruction that caused the watchpoint to trig-
ger. If the memory store instruction is the last instruction in a source state-
ment, the PC will be pointing to the source line following the statement that
triggered the watchpoint. (Breakpoints and watchpoints work differently. A
28 TotalView Users Guide Version 5.0

Setting Action Points

Using Watchpoints
breakpoint stops before an instruction executes. In contrast, a watchpoint
stops after an instruction executes.)

Using Multiple Watchpoints
If a program modifies more than one byte with one program instruction or
statement (which is normally the case when storing a word), TotalView trig-
gers the watchpoint with the lowest memory location in the modified re-
gion. Although the program may be modifying locations monitored by
other watchpoints, only the watchpoint for the lowest memory location is
triggered. This can occur when your watchpoints are monitoring adjacent
memory locations and a single store instruction modifies these locations.

For example, assume that you have two 1-byte watchpoints, one on loca-
tion 0x10000 and the other on location 0x10001. Also assume that your
program uses a single instruction to store a 2-byte value at locations
0x10000 and 0x10001. If the 2-byte storage operation modifies both bytes,
the watchpoint for location 0x10000 triggers. The watchpoint for location
0x10001 does not and will not trigger at this time.

Here’s a second example. Assume that you have a 4-byte integer that uses
storage locations 0x10000 through 0x10003 and you set a watchpoint on
this integer. If a process modifies location 0x10002, TotalView triggers the
watchpoint. Now assume that you are watching two adjacent 4-byte inte-
gers that are stored in locations 0x10000 through 0x10007. If a process
writes to locations 0x10003 and 0x10004 (that is, one byte within each),
TotalView triggers the watchpoint associated with location 0x10003. The
watchpoint associated with location 0x10004 does not trigger.

Data Copies
TotalView keeps an internal copy of data in the watched memory locations
for each process sharing the watchpoint. If you create watchpoints that
cover a large area of memory or if your program has a large number or pro-
cesses, you will increase TotalView’s virtual memory requirements. Further,
TotalView refetches data for each memory location whenever it continues
the process or thread. This can affect TotalView’s performance.
Version 5.0 TotalView Users Guide 229

2

9
Setting Action Points

Using Watchpoints
Conditional Watchpoints

If you associate an expression with a watchpoint (by selecting the CDWP
icon in the Tools > Watchpoint dialog box and entering an expression),
TotalView will evaluate the expression after the watchpoint triggers. The
programming statements that you can use in this area are identical to
those that you can use when creating an evaluation point, except that you
cannot call functions from a watchpoint expression.

The variables used in watchpoint expressions must be global. This is be-
cause the watchpoint can be triggered from any procedure or scope within
your program.

Because memory locations are not scoped, the variable used in your ex-
pression must be globally accessible.

NOTE Fortran does not have global variables. Consequently, you cannot directly re-
fer to your program’s variables.

TotalView has two intrinsic variables that are specifically designed to be
used with conditional watchpoint expressions:

$oldval The value of the memory locations before a change is
made.

$newval The value of the memory locations after a change is
made.

Here is an expression that uses these values:

if (iValue != 42 && iValue != 44) {
iNewValue = $newval; iOldValue = $oldval; $stop;}

When the value iValue global variable is neither 42 nor 44, TotalView will
store the new and old memory values in the iNewValue and iOldValue
variables. These variables are defined in the program. (Storing the old and
new values is a convenient way of letting you monitor the changes made by
your program.)

Here is a condition that triggers a watchpoint when a memory location’s
value becomes negative:

if ($oldval >= 0 && $newval < 0) $stop
30 TotalView Users Guide Version 5.0

Setting Action Points

Using Watchpoints
And here’s a condition that triggers a watchpoint when the sign of the
value in the memory location changes:

if ($newval * $oldval <= 0) $stop

Both of these examples require that you set the Type for $oldval/$newval
field in the Watchpoint Properties dialog box.

For more information on writing expressions, see “Writing Code Fragments”
on page 234.

If a watchpoint has the same length as the $oldval or $newval data type,
the value of these variables is apparent. However, if the data type is shorter
than the length of the watch region, TotalView searches for the first
changed location in the watched region and uses that location for $oldval
and $newval variables. (It aligns data within the watched region based on
the size of the data’s type. For example, if the data type is a 4-byte integer
and byte 7 in the watched region changes, TotalView uses bytes 4 through
7 of the watchpoint when it assigns values to these variables.)

For example, suppose you are watching an array of 1000 integers called
must_be_positive and you want to trigger a watchpoint as soon as one el-
ement becomes negative. You would declare the type for $oldval and
$newval to be int and use the following condition:

if ($newval < 0) $stop;

When your program writes a new value to the array, TotalView triggers the
watchpoint, sets the values of $oldval and $newval, and evaluates the ex-
pression. When $newval is negative, the $stop statement halts the pro-
cess.

This can be a very powerful technique for range checking all the values
written into an array. (Because of byte length restrictions, you can only use
this technique on IRIX and Solaris.)

NOTE Conditional watchpoints are always interpreted by TotalView; they are never
compiled. And, because interpreted watchpoints are single threaded within
TotalView, every process or thread that writes to the watched location must wait for
other instances of the watchpoint to finish executing. This can adversely affect per-
formance.
Version 5.0 TotalView Users Guide 231

2

9
Setting Action Points

Saving Action Points to a File
Saving Action Points to a File

You can save a program’s action points into a file. TotalView will then use
this information to reset these points when you restart the program. When
you save action points, TotalView creates a file named pro-
gram.TVD.breakpoints, where program is the name of your program.

NOTE Watchpoints are not saved.

Use the Action Point > Save All command to save your action points to a
file. TotalView places the action points file in the same directory as your
program.

If you are using a preference to automatically save breakpoints, TotalView
will automatically save action points to a file. Alternatively, starting
TotalView with the –sb option (see “TotalView Command Syntax” on page 289)
also tells TotalView to save your breakpoints.

Automatic saving and loading is controlled by preferences (see File >
Preferences within the online help for more information) and can be al-
tered temporarily by using the –sb and –nlb options.

Evaluating Expressions

TotalView lets you open a window for evaluating expressions in the context
of a particular process and evaluate expressions in C, Fortran, or assem-
bler.

NOTE Not all platforms let you use assembler constructs; see Appendix C “Archi-
tectures” on page 337 for details.

You can use the Tools > Evaluate dialog box in many different ways, but
here are two examples:

g Expressions can contain loops, so you could use a for loop to search an
array of structures for an element set to a certain value. In this case, you
use the loop index at which the value is found as the last expression in
the expression field.
32 TotalView Users Guide Version 5.0

Setting Action Points

Evaluating Expressions
g Because you can call subroutines, you can test and debug a single rou-
tine in your program without building a test program to call it.

To evaluate an expression:

1 Tell TotalView to display the Evaluate dialog box by selecting the
Tools > Evaluate command. An Evaluate dialog box appears. If your
program has not yet been created, you will not be able to use any of
the program’s variables or call any of its functions.

2 Select the button (if it is not already selected) for the language in
which you will write the code.

3 Move to the Expression field and enter a code fragment. For a de-
scription of the supported language constructs, see “Writing Code Frag-
ments” on page 234.

TotalView returns the value of the last statement in the code fragment.
This means that you do not have to assign the expression’s return value
to a variable. Figure 118 shows a sample expression. The last statement
in this example assigns the value of my_var1-3 back to my_var1. Be-
cause this is the last statement in the code fragment, the value placed in
the Result field would be the same if you had just typed my_var1-3.

4 Select the Evaluate button. If TotalView finds an error, it places the
cursor on the incorrect line and displays an error message. Other-
wise, it interprets (or on some platforms, compiles and executes) the
code, and displays the value of the last expression in the Result field.

Figure 118: Tools > Evaluate Dialog Box
Version 5.0 TotalView Users Guide 233

2

9
Setting Action Points

Writing Code Fragments
While the code is being executed, you cannot modify anything in the dia-
log box. TotalView may also display a message box that tells you that it is
waiting for the command to complete. (See Figure 119.)

If you select Cancel, TotalView stops execution.
Since TotalView evaluates code fragments in the context of the target
process, it evaluates stack variables according to the currently selected
stack frame. If the fragment reaches a breakpoint (or stops for any other
reason), TotalView stops evaluating your expression. Assignment state-
ments within an expression can affect the target process because they
can change a variable’s value.

Writing Code Fragments

You can use code fragments in evaluation points and in the Tools >
Evaluate dialog box. This section describes the intrinsic variables, built-in
statements, and language constructs supported by TotalView.

Intrinsic Variables

The TotalView expression system supports built-in variables that allow you
to access special thread and process values. All variables are 32-bit inte-
gers, which is an int or a long on most platforms. Table 18 lists the intrinsic
variable names and their meanings.

Figure 119: Waiting to Complete Message Box

Table 18: Intrinsic Variables

Name Returns
$clid The cluster ID. (Interpreted expressions only.)
$duid The TotalView-assigned Debugger Unique ID (DUID).

(Interpreted expressions only.)
34 TotalView Users Guide Version 5.0

Setting Action Points

Writing Code Fragments
Intrinsic variables allow you to create thread-specific breakpoints from the
expression system. For example, the $tid intrinsic variable and the $stop
built-in operation let you create thread-specific breakpoint as follows:

if ($tid == 3)
$stop;

This tells TotalView to stop the process only when thread 3 evaluates the
expression.

You can also create complex expressions by using intrinsic variables. For
example:

if ($pid != 34 && $tid > 7)
printf (“Hello from %d.%d\n”, $pid, $tid);

NOTE Using any of the following intrinsics means that the evaluation point is inter-
preted instead of compiled: $clid, $duid, $nid, $processduid, $systid, $tid, and $vi-
sualize. In addition, $pid forces interpretation on AIX.

You cannot assign a value to an intrinsic variable or obtain their address.

$newval The value just assigned to a watched memory loca-
tion. (Watchpoints only.)

$nid The node ID. (Interpreted expressions only.)
$oldval The value that existed in a watched memory location

before a new value modified it. (Watchpoints only.)
$pid The process ID.
$processduid The DUID of the process. (Interpreted expressions

only.)
$systid The system-assigned thread ID. When this is refer-

enced from a process, TotalView throws an error.
$tid The TotalView-assigned thread ID. When this is refer-

enced from a process, TotalView throws an error.

Table 18: Intrinsic Variables (cont.)

Name Returns
Version 5.0 TotalView Users Guide 235

2

9
Setting Action Points

Writing Code Fragments
Built-In Statements

TotalView provides a set of built-in statements that you can use when writ-
ing code fragments. The statements are available in all languages, and are
shown in the following table.

Table 19: Built-In Statements Used in Expressions

Statement Use
$count expression
$countprocess expression

Sets a process-level countdown breakpoint.
When any thread in a process executes this
statement for the number of times specified by
expression, the process stops. The other pro-
cesses in the control group continue to exe-
cute.

$countall expression Sets a program-group-level countdown break-
point. All processes in the control group stop
when any process in the group executes this
statement for the number of times specified by
expression.

$countthread expression Sets a thread-level countdown breakpoint.
When any thread in a process executes this
statement for the number of times specified by
expression, the thread stops. Other threads in
the process continue to execute.

If the target system can not stop an individual
thread, this statement performs identically to
$countprocess.

A thread evaluates expression when it executes
$count for the first time. This expression must
evaluate to a positive integer. When TotalView
first encounters this intrinsic, it determines a
value for expression. TotalView will not reevalu-
ate until the expression actually stops the
thread. This means that TotalView ignores
changes in the value of expression until it hits
the breakpoint. After the breakpoint occurs,
TotalView reevaluates expression and sets a
new value for this statement.
36 TotalView Users Guide Version 5.0

Setting Action Points

Writing Code Fragments
The internal counter is stored in the process
and shared by all threads in that process.

$hold
$holdprocess

Holds the current process. If all other pro-
cesses in the group are already held at this
Eval point, then TotalView will release all of
them. If other processes in the group are run-
ning, they continue to run.

$holdstopall
$holdprocessstopall

Exactly like $hold, except any processes in the
group which are running are stopped. Note that
the other processes in the group are not auto-
matically held by this call—they are just
stopped.

$holdthread Freezes the current thread, leaving other
threads running.

$holdthreadstop
$holdthreadstopprocess

Exactly like $holdthread except it stops the pro-
cess. The other processes in the group are left
running.

$holdthreadstopall Exactly like $holdthreadstop except it stops
the entire group.

$stop
$stopprocess

Sets a process-level breakpoint. The process
that executes this statement stops; other pro-
cesses in the control group continue to exe-
cute.

$stopall Sets a program-group-level breakpoint. All
processes in the control group stop when any
thread or process in the group executes this
statement.

$stopthread Sets a thread-level breakpoint. Although the
thread that executes this statement stops, all
other threads in the process continue to exe-
cute.

If the target system can not stop an individual
thread, this statement performs identically to
$stopprocess.

Table 19: Built-In Statements Used in Expressions (cont.)

Statement Use
Version 5.0 TotalView Users Guide 237

2

9
Setting Action Points

Writing Code Fragments
C Constructs Supported

When writing code fragments in C, keep these guidelines in mind:

g C-style (/* comment */) and C++-style (// comment) comments are
permitted. For example:

// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */

g You can omit semicolons if the result is not ambiguous.

g You can use dollar signs ($) in identifiers.

Data Types and Declarations
The following list describes the C data types and declarations that you can
use:

g The data types that you can use are char, short, int, float, double, and
pointers to any primitive type or any named type in the target program.

g Only simple declarations are permitted. Do not use struct, union, and
array declarations.

g You can refer to variables of any type in the target program.

g Unmodified variable declarations are considered local. References to
these declarations override references to similarly named global vari-
ables and other variables in the target program.

g (Compiled evaluation points only.) The global declaration makes a vari-
able available to other evaluation points and expression windows in the
target process.

$visualize(expression[,slice]) Visualizes the data specified by expression and
modified by the optional slice value. Expression
and slice must be expressed using the code
fragment’s language. The expression must re-
turn a dataset (after modification by slice) that
can be visualized. slice is a quoted string con-
taining a slice expression. For more informa-
tion on using $visualize in an expression, see
“Visualizing Data in Expressions” on page 252.

Table 19: Built-In Statements Used in Expressions (cont.)

Statement Use
38 TotalView Users Guide Version 5.0

Setting Action Points

Writing Code Fragments
g (Compiled evaluation points only.) The extern declaration references a
global variable that was or will be defined elsewhere. If the global vari-
able is not yet defined, TotalView displays a warning.

g Static variables are local and persist even after TotalView evaluates an
evaluation point.

g TotalView only evaluates expressions that initialize static and global vari-
ables the first time it evaluates a code fragment. In contrast, it initializes
local variables each time it evaluates a code fragment.

Statements
The following list describes the C language statements that you can use.

g The statements that you can use are assignment, break, continue,
if/else structures, for, goto, and while.

g You can use the goto statement to define and branch to symbolic labels.
These labels are local to the window. You can also refer to a line number
in the program. This line number is the tag field number of the source
code line. For example, here is a goto statement that branches to
source line number 432 of the target program:

goto 432;

g Although function calls are permitted, you cannot pass structures.

g Type casting is permitted.

All operators are permitted, with these limitations:

g TotalView does not support the ?: conditional operator.

g While you can use the sizeof operator, you cannot use it for data types.

g The (type) operator cannot cast data to fixed-dimension array by using C
cast syntax.

Fortran Constructs Supported

When writing code fragments in Fortran, keep these guidelines in mind:

g Only enter one statement on a line. You cannot continue a statement
onto more than one line.

g You can use GOTO, GO TO, ENDIF, and END IF statements; while ELSEIF
is not allowed, you can use ELSE IF.
Version 5.0 TotalView Users Guide 239

2

9
Setting Action Points

Writing Code Fragments
g Syntax is free-form. No column rules apply.

g You can enter comments in several formats. For example, you can use
the following format:

C I=I+1
/*
I=I+1
J=J+1
ARRAY1(I,J)= I * J
*/

g The space character is significant and is sometimes required. (Some For-
tran 77 compilers ignore all space characters.) For example:

Data Types and Declarations
The following is a list of data types and declarations that you can use in a
Fortran expression.

g You can use the following data types: INTEGER (assumed to be long),
REAL, DOUBLE PRECISION, and COMPLEX.

g You cannot use implied data types are not permitted.

g You can only use simple declarations. You cannot use a COMMON,
BLOCK DATA, EQUIVALENCE, STRUCTURE, RECORD, UNION, or an array
declaration.

g Your can refer to variables of any type in the target program.

Statements
The following list describes the Fortran language statements that you can
use.

g You can use the following statements: assignment, CALL (to subroutines,
functions, and all intrinsic functions except CHARACTER functions in the
target program), CONTINUE, DO, GOTO, IF (including block IF, ENDIF,
ELSE, and ELSE IF), and RETURN (but not an alternate return).

Valid Invalid
DO 100 I=1,10 DO100I=1,10

CALL RINGBELL CALL RING BELL

X .EQ. 1 X.EQ.1
40 TotalView Users Guide Version 5.0

Setting Action Points

Writing Code Fragments
g A GOTO statement can refer to a line number in your program. This line
number is the tag field number. For example, the following GOTO state-
ment branches to source line number 432:

GOTO $432;
You must use a dollar sign before the line number so that TotalView
knows that you are referring to the tag field number rather than a state-
ment label.

g The only expression operators that are not supported are the
CHARACTER operators and the .EQV., .NEQV., and .XOR. logical opera-
tors.

g You cannot use subroutine function and entry definitions.

g You cannot use Fortran 90 array syntax.

g You cannot use Fortran 90 pointer assignment (the => operator).

g You cannot call Fortran 90 functions that require assumed shape array
arguments.

Writing Assembler Code

On Compaq Tru64 UNIX, RS/6000 IBM AIX, and SGI IRIX operating systems,
TotalView lets you use assembler code in evaluation points, conditional
breakpoints, and in the Tools > Evaluate dialog box. However, if you want
to use assembler constructs, you must enable compiled expressions. See
“Interpreted vs. Compiled Expressions” on page 220 for instructions.

To indicate that an expression in the breakpoint or Evaluate dialog box is
an assembler expression, click on the Assembler button in the Action
Point > Properties dialog box, as shown in Figure 120.

Assembler expressions are written in the TotalView Assembler Language. In
this language, instructions are written in the target machine’s native as-
sembler language; the operators available to construct expressions in in-
struction operands and the set of available pseudo-operators, however, are
the same on all machines.

The TotalView assembler accepts instructions using the same mnemonics
recognized by the native assembler and recognizes the same names for
registers that native assemblers recognize.
Version 5.0 TotalView Users Guide 241

2

9
Setting Action Points

Writing Code Fragments
Some architectures provide extended mnemonics that do not correspond
exactly with machine instructions and which represent important, special
cases of instructions, or provide for assembling short, commonly used se-
quences of instructions. The TotalView assembler recognizes these mne-
monics if:

g They assemble to exactly one instruction.

g The relationship between the operands of the extended mnemonics and
the fields in the assembled instruction code is a simple one-to-one cor-
respondence.

Assembler Language, labels are indicated as name: and appear at the begin-
ning of a line. Labels may appear alone on a line. The symbols you can use
include labels defined in the assembler expression and all program sym-
bols.

Figure 120: Using Assembler
42 TotalView Users Guide Version 5.0

Setting Action Points

Writing Code Fragments
The TotalView assembler operators are described in the following table:

The TotalView Assembler pseudo-operations are as follows:

Table 20: TotalView Assembler Operators

Operators Definition
+ Plus
– Minus (also unary)
* Times
Remainder
/ Quotient
& Bitwise AND
^ Bitwise XOR
! Bitwise OR NOT (also unary -, bitwise NOT)
| Bitwise OR

(expr) Grouping

<< Left shift

>> Right shift

“text” Text string, 1-4 characters long, is right justified in a
32-bit word

hi16 (expr) Low 16 bits of operand expr

hi32 (expr) High 32 bits of operand expr

lo16 (expr) High 16 bits of operand expr

lo32 (expr) Low 32 bits of operand expr

Table 21: TotalView Assembler Pseudo Operations

Pseudo Ops Definition
$debug [0 | 1] Internal debugging option.

With no operand, toggle debugging;
0 => turn debugging off
1 => turn debugging on

$hold
$holdprocess

Hold the process

$holdstopall
$holdprocessstopall

Hold the process and stop the control group
Version 5.0 TotalView Users Guide 243

2

9
Setting Action Points

Writing Code Fragments
$holdthread Hold the thread

$holdthreadstop
$holdthreadstopprocess

Hold the thread and stop process

$holdthreadstopall Hold the thread and stop the control group

$long_branch expr Branch to location expr using a single instruc-
tion in an architecture-independent way; using
registers is not required

$stop
$stopprocess

Stop the process

$stopall Stop the control group

$stopthread Stop the thread

name=expr Same as def name,expr

align expr [, expr] Align location counter to an operand 1 align-
ment; use operand 2 (or zero) as the fill value
for skipped bytes

ascii string Same as string

asciz string Zero-terminated string

bss name,size-expr[,expr] Define name to represent size-expr bytes of stor-
age in the bss section with alignment optional
expr; the default alignment depends on the size:

if size-expr >= 8 then 8 else
if size-expr >= 4 then 4 else
if size-expr >= 2 then 2 else 1

byte expr [, expr] … Place expr values into a series of bytes

comm name,expr Define name to represent expr bytes of storage
in the bss section; name is declared global;
alignment is as in bss without an alignment ar-
gument

data Assemble code into data section (data)

def name,expr Define a symbol with expr as its value

double expr [, expr] … Place expr values into a series of doubles

equiv name,name Make operand 1 be an abbreviation for oper-
and 2

Table 21: TotalView Assembler Pseudo Operations (cont.)

Pseudo Ops Definition
44 TotalView Users Guide Version 5.0

Setting Action Points

Writing Code Fragments
fill expr, expr, expr Fill storage with operand 1 objects of size oper-
and 2, filled with value operand 3

float expr [, expr] … Place expr values into a series of floats

global name Declare name as global

half expr [, expr] … Place expr values into a series of 16-bit words

lcomm name,expr[,expr] Identical to bss

lsym name,expr Same as def name,expr but allows redefinition of
a previously defined name

org expr [, expr] Set location counter to operand 1 and set op-
erand 2 (or zero) to fill skipped bytes

quad expr [, expr] … Place expr values into a series of 64-bit words

string string Place string into storage
text Assemble code into text section (code)

word expr [, expr] … Place expr values into a series of 32-bit words

zero expr Fill expr bytes with zeros

Table 21: TotalView Assembler Pseudo Operations (cont.)

Pseudo Ops Definition
Version 5.0 TotalView Users Guide 245

2

9
Setting Action Points

Writing Code Fragments
46 TotalView Users Guide Version 5.0

Version 5.0
Chapter 10
Visualizing Data
The TotalView Visualizer works with the TotalView debugger to create graphical
images of your program’s array data. Topics in this chapter are:

g How the Visualizer Works
g Configuring TotalView to Launch the Visualizer
g Data Types That TotalView Can Visualize
g Visualizing Data from the Variable Window
g Visualizing Data in Expressions
g Using the TotalView Visualizer
g Viewing of Data
g Launching the Visualizer from the Command Line

The Visualizer is not available on Linux Alpha and 32-bit SGI Irix.

NOTE The online help contains information on adapting a third party visualizer so
that it can be used with TotalView.

How the Visualizer Works

You can use the Visualizer in two ways: you can launch it from within
TotalView to visualize data as you debug your programs, and you can run it
from a command line to visualize data previously dumped to a file.

Visualizing your program’s data is a two step process:

1 You interact with TotalView to choose the data being visualized.

2 You interact with the Visualizer to choose how it should display your
data.
TotalView Users Guide 247

2

10
Visualizing Data

How the Visualizer Works
The TotalView debugger handles the first of these interactions, extracting
data and marshalling it into a standard format that it sends down a pipe.
The Visualizer then reads the data from this pipe and displays it for analy-
sis. The following figure shows this relationship.

You can send data directly from TotalView to the Visualizer while you are
debugging your program or you can send data from TotalView directly to a
third-party visualizer. If you save visualization data to a file, you can launch
the Visualizer from the command line to have it visualize this saved data.
Figure 122 shows these relationships.

FIGURE 121: TotalView Visualizer Connection

FIGURE 122: TotalView Visualizer Relationships

TotalView: Extracts data from
an array

The TotalView Visualizer: Displays
the array data graphically

Sends data to
Visualizer

Launch Third
Party Visualizer

Launch Visualizer
from Command Line

TotalView
Visualizer

Third Party
Visualizer

Launch Visualizer
from TotalView

Save Data
to File

Visualizer
Data File

TotalView
48 TotalView Users Guide Version 5.0

Visualizing Data

Configuring TotalView to Launch the Visualizer
Configuring TotalView to Launch the Visualizer

TotalView can automatically launch the Visualizer when it is named in a
Variable window, or the Action Point > Properties or the Tools > Evaluate
dialog boxes. After TotalView launches the Visualizer, it sends data to the
Visualizer’s so you can visualize datasets as your program creates them.

If you disable visualization, TotalView silently ignores all attempts to use
the Visualizer. This is useful when you want to execute some code contain-
ing evaluation points that do visualization and do not want to individually
disable all these points.

To change the Visualizer launch options interactively, select File >
Preferences, then select the Launch Strings Tab. This is shown in
Figure 123.

You can now:

g If you use a customized command to start a visualizer, enter its startup
command in the Command edit box. Entering information in this field is
discussed a little later in this section.

FIGURE 123: File > Preferences Launch Strings Page
Version 5.0 TotalView Users Guide 249

2

10
Visualizing Data

Data Types That TotalView Can Visualize
g Change the auto launch option. If you want to disable visualization, clear
the Enable Visualizer Launch check box.

g Change the maximum permissible rank. Edit the value in the Maximum
array rank edit field to save the data exported from the debugger or dis-
play it in a different visualizer. You can enter a number from 1 to 16.

Setting the maximum permissible rank to either 1 or 2 (the default is 2)
ensures that the TotalView Visualizer can use your data—the Visualizer
displays only two dimensions of data. This limit does not apply to data
saved in files or to visualizers that can display more than two dimen-
sions of data.

g Clicking on the Defaults button sets options to their defaults. This re-
verts options to their defaults even if you have used X resources to
change them.

If you disable visualization while the Visualizer is running, TotalView closes
its connection to the Visualizer. If you reenable visualization, TotalView
launches a new Visualizer process the next time you visualize something.

You can change the shell command that TotalView uses to launch the visu-
alizer by editing the Visualizer launch command. (You would use this if you
are running a different visualizer.) Or, you can save this information for
viewing at another time. For example, you can save visualization informa-
tion by entering the following command:

cat > your_file

Later, you can visualize this information by using either of the following
commands:

visualize –persist < your_file
visualize –file your_file

You can preset the visualizer launch options by setting X resources. For de-
tails, see Chapter 12 “X Resources” on page 275.

Data Types That TotalView Can Visualize

The data selected for visualization is called a dataset. Each dataset is tagged
with a TotalView-generated numeric identifier that lets the Visualizer know
whether it is seeing a new dataset or an update to an existing dataset.
50 TotalView Users Guide Version 5.0

Visualizing Data

Visualizing Data from the Variable Window
TotalView treats stack variables at different recursion levels or call paths as
different datasets

TotalView can visualize one- and two-dimensional arrays of character, inte-
ger, or floating-point data. This data cannot be located in registers. If an ar-
ray has more than two dimensions, you can visualize part of it using an
array slice expression that creates a sub-array having fewer dimensions.
Figure 124 shows a three-dimensional variable sliced into two dimensions
by selecting a single index in the middle dimension.

Visualizing Data from the Variable Window

You can tell the Visualizer to display the information contained within a
Variable Window. Before you can visualize an array, you must open a Vari-
able Window for the array’s data and stop program execution at the point
where you want to visualize the array’s values. Figure 125 is an example.

Editing the Type and Slice fields lets you select the data you want visual-
ized. For example, editing the Slice fields limits the amount of data being
visualized. (See “Displaying Array Slices” on page 183.) Limiting the amount
increases the Visualizer’s speed.

Launch the Visualizer by selecting the Tools > Visualize command. The Vi-
sualizer will then create its window. The data sent to the Visualizer is not

FIGURE 124: A Three-Dimensional Array Sliced into Two Dimensions
Version 5.0 TotalView Users Guide 251

2

10
Visualizing Data

Visualizing Data in Expressions
automatically updated as you step through your program. You must explic-
itly update the display by reentering the Tools > Visualize command.

You can also visualize a laminated variable. (See “Visualizing a Laminated Vari-
able Window” on page 200.) The process or thread index forms one of the di-
mensions of the visualized data. This means that you can only visualize
scalar or vector information. If you do not want the process or thread index
as a dimension, use a nonlaminated display.

Visualizing Data in Expressions

The $visualize intrinsic (built-in) function lets you use TotalView’s evalua-
tion system to visualize data. This function lets you:

g Visualize several different variables from a single expression.

g Visualize variables from the Process Window’s Tools > Evaluate dialog
box.

g Visualize one or more variables from an evaluation point.

The syntax for the $visualize intrinsic is:

$visualize (array [, slice_string])

The array parameter is an expression naming the dataset being visualized.
The optional slice_string parameter is a quoted string defining a constant
slice expression that modifies the array parameter’s dataset.

FIGURE 125: Variable Window
52 TotalView Users Guide Version 5.0

Visualizing Data

Visualizing Data in Expressions
The following examples show how you can use this intrinsic. Notice that
the array’s dimension ordering differs in C and in Fortran.

C $visualize(my_array);

$visualize (my_array,”[::2][10:15]”);

$visualize (my_array,”[12][:]”);

Fortran $visualize (my_array)

$visualize (my_array,’(11:16,::2)’)

$visualize (my_array,’(:,13)’)

The first example in each programming language group visualizes the entire
array. The second example selects every second element in the array’s ma-
jor dimension; it also clips the minor dimension to all elements in the given
(inclusive) range. The third example reduces the dataset to a single dimen-
sion by selecting one subarray.

You may need a cast expression to let TotalView know what the dimensions
of the variable being visualized are. For example, here is a procedure that
passes a two-dimensional array parameter that does not specify the extent
of the major dimension:

void my_procedure (double my_array[][32])
{ /* procedure body */ }

You will need to use the following cast expression because the first dimen-
sion is not specified:

$visualize (*(double[32][32]*)my_array);

You can use $visualize in the Tools > Evaluate dialog box or by adding an
expression to an evaluation point. But note that TotalView cannot compile
an evaluation point or expression that contains $visualize. Instead,
TotalView interprets these statements. See “Defining Evaluation Points” on
page 216 for information about compiled and interpreted expressions.

Using $visualize in a Tools > Evaluate dialog box is a handy technique you
can use to refine an array and slice arguments or to update a display of
several arrays simultaneously.
Version 5.0 TotalView Users Guide 253

2

10
Visualizing Data

Using the TotalView Visualizer
Visualizer Animation

Using $visualize in an evaluation point lets you animate the changes that
occur in your data because the Visualizer will update the array’s display ev-
ery time TotalView reaches the evaluation point.

Using the TotalView Visualizer

The Visualizer has two types of windows:

g Data Windows
The windows containing images of the datasets. By interacting with a
Data Window, you can change its appearance and set viewing options.

g A Directory Window
A window that lists the datasets that you can visualize. Use this window
to set global options and to create views of your datasets. Using the Di-
rectory Window, you can open several Data Windows on a single dataset
to get different views of the same data.

Figure 126 shows a Directory Window and two Data Windows. The left win-
dow shows a surface view while the right Data Window shows a graph view.

Directory Window

The Directory Window contains a list of the datasets you can display. You
can select a dataset by clicking on it and you can only select one dataset at
a time. The View menu lets you select Graph or Surface visualization.
Whenever TotalView sends a new dataset, the Visualizer updates its list of
datasets. To delete a dataset from the list, click on it, and then display the
File menu and select Delete.

You can automatically visualize a dataset by double-clicking on it.

The following list defines the Directory Window’s menu bar commands.

File > Delete Deletes the currently selected dataset. It removes the
dataset from the dataset list and destroys any Data
Windows displaying it.

File > Exit Closes all windows and exits the Visualizer.
54 TotalView Users Guide Version 5.0

Visualizing Data

Using the TotalView Visualizer
View > Graph Creates a new Graph Window; see “Graph Window” on
page 258 for more detail.

View > Surface Creates a new Surface Window; see “Surface Window”
on page 260 for more detail.

Options > Auto Visualize
This item is a toggle; when enabled, the Visualizer au-
tomatically visualizes new datasets as they are read.

Data Windows

Data Windows display graphical images of your data. Figure 127 shows a
surface view and a graph view. Every Data Window contains a menu bar and
a drawing area. The Data Window title is its dataset identification.

FIGURE 126: Sample Visualizer Windows
Version 5.0 TotalView Users Guide 255

2

10
Visualizing Data

Using the TotalView Visualizer
The File menu on the menu bar is the same for all Data Windows. Other
items are unique to the type of Data Window. The Data Window menu com-
mands are as follows.

File > Close Closes the Data Window.

File > Delete Deletes the Data Window’s dataset from the dataset
list. This also destroys other Data Windows viewing
the dataset.

File > Directory Raises the Directory Window to the front of the desk-
top. If the Directory Window is minimized, the Visual-
izer restores it.

File > New Base Window
Creates a new Data Window having the same visualiza-
tion method and dataset as the current Data Window.

File > Options Pops up a window of viewing options.

The drawing area displays the image of your data. You can interact with the
drawing area to alter the view of your data. For example, in the surface
view, you can rotate the graph to view it from different angles. You can also

FIGURE 127: Sample Visualizer Data Windows
56 TotalView Users Guide Version 5.0

Visualizing Data

Viewing of Data
get the value and indices of the dataset element nearest the cursor by
clicking on it. A pop-up window displays the information.

Viewing of Data

Different datasets can require different views to display their data. For ex-
ample, a graph is more suitable for displaying one-dimensional datasets or
two-dimensional datasets where one of the dimensions has a small extent;
however, a surface view is better for displaying a two-dimensional dataset.

When the Visualizer is launched, one of the following actions will occur:

g If the dataset has never been visualized, the Visualizer chooses a
method, based on how well a given dataset matches an ideal dataset for
each method.

FIGURE 128: Rotating and Querying
Version 5.0 TotalView Users Guide 257

2

10
Visualizing Data

Viewing of Data
g If a dataset was previously visualized but no Data Window currently ex-
ists for it, the Visualizer creates a new Data Window by using the most re-
cent visualization method.

g If a Data Window is currently displaying the dataset, the Visualizer raises
it to the top of the desktop. If the window was minimized, the Visualizer
restores it.

The Visualizer can automatically choose a visualization method and create
a new Data Window when it reads a new dataset. You can enable and dis-
able this feature from the Options menu in the Directory Window.

Graph Window

The Graph Window displays a two-dimensional graph of one- or two-di-
mensional datasets. If the dataset is two-dimensional, the Visualizer dis-
plays multiple graphs. When you first create a Graph Window on a two-
dimensional dataset, the Visualizer uses the dimension with the larger
number of elements for the x axis. It then draws a separate graph for each
subarray having the smaller number of elements. If you do not like this
choice, you can transpose the data.

NOTE You probably do not want to use a graph to visualize two-dimensional
datasets with large extents in both dimensions, as the display will be very cluttered.

You can display graphs with markers for each element of the dataset, with
lines connecting dataset elements, or with both lines and markers as
shown in Figure 129. See “Displaying Graphs” on page 258 for more details.
Multiple graphs are displayed in different colors. The X axis of the graph is
annotated with the indices of the long dimension. The Y axis shows you the
data value.

You can scale and translate the graph, or pop up a window displaying the
indices and values for individual dataset elements. See “Manipulating
Graphs” on page 260 for details.

Displaying Graphs
The File >Options dialog box lets you control how the Visualizer displays
the graph. (See Figure 130.)
58 TotalView Users Guide Version 5.0

Visualizing Data

Viewing of Data
The following indicates the meanings of the check boxes within this dia-
log box.

Lines If set, the Visualizer displays lines connecting dataset
elements.

Points If set, the Visualizer displays markers for dataset ele-
ments.

Transpose If set, the Visualizer inverts the x and y axis of the dis-
played graph.

FIGURE 129: Visualizer Graph Data Window

FIGURE 130: Graph Options Dialog Box
Version 5.0 TotalView Users Guide 259

2

10
Visualizing Data

Viewing of Data
Manipulating Graphs
You can manipulate the way the graph is displayed by using the following
actions:

Scale Press the Control key and hold down the middle
mouse button. Move the mouse down to zoom in on
the center of the drawing area, or up to zoom out.

Translate Press the Shift key and hold down the middle mouse
button. Moving the mouse drags the graph.

Zoom Press the Control key and hold down the left mouse
button. Drag the mouse button to create a rectangle
that encloses an area. This area is then scaled to fit
the drawing area.

Reset View Select View > Reset to reset the display to its initial
state.

Query Hold down the left mouse button near a graph
marker. A window pops up displaying the dataset ele-
ment’s indices and value.

Figure 131 on page 261 shows a graph view of two dimensional random
data created by selecting Points and deselecting Lines in the Data Win-
dow’s Graph Options dialog box.

Surface Window

The Surface Window displays two-dimensional datasets as a surface in two
or three dimensions. The dataset’s array indices map to the first two di-
mensions (x and y axes) of the display. Figure 132 on page 261 shows a
two-dimensional map, where the dataset values are shown using only the
Zone option. (This demarcates ranges of element values.) For a zone map
with contour lines, turn the Zone and Contour settings on and Mesh and
Shade off.

You can display random data by selecting only the Zone setting and turning
Mesh, Shade, and Contour off. The display shows where the data is lo-
cated and allows you to click on it to get the values of the various points.

Figure 133 on page 262 shows a three-dimensional surface that maps ele-
ment values to the height (z axis).
60 TotalView Users Guide Version 5.0

Visualizing Data

Viewing of Data
FIGURE 131: Display of Random Data

FIGURE 132: Two-Dimensional Surface Visualizer Data Display
Version 5.0 TotalView Users Guide 261

2

10
Visualizing Data

Viewing of Data
Displaying Surface Data
The Surface Window’s File > Options command lets you control how the
Visualizer displays the graph. (See Figure 134 on page 262.)

This dialog box has the following choices:

Mesh If set, the Visualizer displays the surface as a three di-
mensional mesh, with the x-y grid projected onto the
surface. When neither this option nor the Shade op-

FIGURE 133: Three-Dimensional Surface Visualizer Data Display

FIGURE 134: Surface Options Dialog Box
62 TotalView Users Guide Version 5.0

Visualizing Data

Viewing of Data
tion are set, the Visualizer displays the surface in two
dimensions (See Figure 132).

Shade If set, the Visualizer displays the surface in three di-
mensions and shaded either in a “flat” color to differ-
entiate the top and bottom sides of the surface, or in
colors corresponding to the value if the Zone option
is also set. When neither this option nor the Mesh op-
tion are set, the Visualizer displays the surface in two
dimensions. (See Figure 132 on page 261.)

Contour If set, the Visualizer displays contour lines indicating
ranges of element values.

Zone If set, the Visualizer displays the surface in colors
showing ranges of element values.

Auto Reduce If set, the Visualizer derives the displayed surface by
averaging over neighboring elements in the original
dataset. This speeds up visualization by reducing the
resolution of the surface. Clear this option if you want
to accurately visualize all dataset elements.

The Auto Reduce option allows you to choose be-
tween viewing all your data points—which takes
longer to appear in the display—or viewing the aver-
aging of data over a number of nearby points.

You can reset the viewing parameters to those used when the Visualizer
first came up by selecting the View > Reset command, which restores all
translation, rotation, and scaling to its initial state and enlarges the display
slightly.

Manipulating Surface Data
The following commands change the display or give you information about
it:

Query Hold down the left mouse button near the surface. A
window pops up displaying the nearest dataset ele-
ment’s indices and value.

Rotate Hold down the middle mouse button and drag the
mouse to freely rotate the surface. You can also press
the x, y, or z keys to select a single axis of rotation.
Version 5.0 TotalView Users Guide 263

2

10
Visualizing Data

Viewing of Data
The Visualizer lets you rotate the surface in two di-
mensions simultaneously.

While you are rotating the surface, the Visualizer dis-
plays a wire-frame bounding box of the surface that
moves with the mouse.

Scale Press the Control key and hold down the middle
mouse button. Move the mouse down to zoom in on
the center of the drawing area, or up to zoom out.

Translate Press the Shift key and hold down the middle mouse
button. Moving the mouse drags the surface.

Zoom Press the Control key and hold down the left mouse
button. Drag the mouse button to create a rectangle
that encloses the area of interest. The Visualizer then
translates and scales the area to fit the drawing area.
See Figure 135.
64 TotalView Users Guide Version 5.0

Visualizing Data

Viewing of Data
FIGURE 135: Zooming, Rotating, About an Axis
Version 5.0 TotalView Users Guide 265

2

10
Visualizing Data

Launching the Visualizer from the Command Line
Launching the Visualizer from the Command Line

To start the Visualizer from the shell, use the following syntax:

visualize [-file filename | -persist]

where:

–file filename Reads data from filename instead of reading from stan-
dard input.

–persist Continues to run after encountering an EOF on stan-
dard input. If you do not use this option, the Visualizer
exits as soon as it reads all of the data from standard
input.

By default, the Visualizer reads its input datasets from its standard input
stream and exits when it reads an EOF on standard input. When started by
TotalView, the Visualizer normally reads its data from a pipe, ensuring that
the Visualizer exits when TotalView does. If you want the Visualizer to con-
tinue to run after it exhausts all input from the standard input stream, in-
voke it by using the –persist option.

If you want to read data from a file, invoke the Visualizer with the –file op-
tion. For example:

visualize –file my_data_set_file

The Visualizer reads all the datasets in the file. This means that the images
you see represent the last versions of the datasets in the file.

The Visualizer supports the generic X toolkit command-line options. For
example, you can start the Visualizer with the Directory Window minimized
by using the –iconic option. Your system manual page for the X server or
the The “X Window System User’s Guide” by O’Reilly & Associates lists the
generic X command-line options in detail.

You can also customize the Visualizer by setting X resources in your re-
source files or on the command line with the –xrm resource_setting op-
tion. The available resources are described in Chapter 13 “TotalView
Command Syntax” on page 289. Use of X resources to modify the default be-
66 TotalView Users Guide Version 5.0

Visualizing Data

Launching the Visualizer from the Command Line
havior of TotalView or the TotalView Visualizer is described in greater detail
in Chapter 12 “X Resources” on page 275.
Version 5.0 TotalView Users Guide 267

2

10
Visualizing Data

Launching the Visualizer from the Command Line
68 TotalView Users Guide Version 5.0

Version 5.0
Chapter 11
Troubleshooting
This chapter describes how to solve common problems that you might encounter
while using TotalView.

Overview

This chapter discusses the following:

g Assembler is shown instead of source code

g Error creating new process

g Error launching process

g Fatal error: Checkout ... failed

g Fatal error in TotalView

g Hangs while debugging

g Internal error in TotalView

g Invalid license key

g License manager does not operate correctly

g Out-of-memory error

g Pressing Ctrl-C in an xterm window causes TotalView to exit

g Program behaves differently under TotalView control: setuid issues

g Program behaves differently under TotalView control: SIGSTOP problems

g Program symbols are not shown

g Single-stepping is slow or TotalView is slow to respond to breakpoints

g Source code does not appear in Source Pane

g TotalView cannot find your source code

g TotalView server (tvdsvr) fails to start on a remote node
TotalView Users Guide 269

2

Troubleshooting

Assembler is shown instead of source code
g When debugging HPF programs, HPF source code does not appear in the
Process Window; only f77 code appears

g Windows do not appear or operate correctly

g X resources are not recognized

The TOTALVIEW RELEASE NOTES contains extensive information on known
problems. There you will find information on configuring TotalView, required
operating patches, and workarounds.

If you cannot solve a problem, please contact us. You will find our bug re-
porting form in the support area of our web site and in our Release Notes.
Or, you can phone us at 1-800-856-3766 in the United States or (+1) 508-
875-3030 worldwide.

The Problems

Assembler is shown instead of source code
Check to make sure that you compiled your program using –g.

Error creating new process
g Increase the swap space on your machine. For details, see “Swap Space” on

page 323.

g Increase the number of process slots in your system. See your operating
system documentation for details.

g Check the xterm window to see if the execve() call failed, and if it did, set
the PATH environment variable.

g Make sure that the /proc file system is mounted on your system. For de-
tails, see “Mounting the /proc File System” on page 322.

Error launching process
g Run your program from the UNIX command line prompt to see if it will

load and start executing. (If it will not start from the UNIX command line,
TotalView will not be able to start it.) If it does not run, make sure your
program is built for the machine on which you are debugging. Or, an
execv() system call fails because the file does not have execute permis-
sion. Or, maybe you are trying to run a 64-bit application on a machine
that only runs 32-bit applications.
70 TotalView Users Guide Version 5.0

Troubleshooting

Hangs while debugging
g Check that all shared libraries needed by your application are accessible.
For example, you may not have properly set the dynamic library runtime
loader path (which is LD_LIBRARY_PATH on most systems).

g Run your program from the UNIX command-line prompt to see if it will
load and start executing. If it begins executing, you can start TotalView,
and then attach to the executing program.

g TotalView cannot launch programs that are started by shell scripts. If it
must be started by a shell script, you must manually start it and then at-
tach to it from within TotalView.

Fatal error: Checkout ... failed
g Check the value of the LM_LICENSE_FILE environment variable. Make

sure the value ends with the string license.dat. The default location for
this file is in the flexlm-6.1 subdirectory within your TotalView installation
directory.

g Make sure the TotalView license manager lmgrd is running on the license
manager host machine. The name of this machine is listed in the SERVER
line of your license.dat file. The default location for this daemon is in the
flexlm-6.1/platform/bin subdirectory within your TotalView installation
directory.

g Make sure that the lmgrd that is running matches the one that came with
your TotalView distribution. That is, if you are running other software that
uses the FLEXlm license manager or if you have not upgraded an older
version of FLEXlm, you might not be running the latest version.

Fatal error in TotalView
Report this problem. See “Reporting Problems” on page xvi.

Hangs while debugging
If you use a process-level single-stepping command in a multiprocess pro-
gram, TotalView may appear to be hung (it continuously displays the watch
cursor). If you single-step a process over a statement that cannot complete
without allowing another process to run and that process is stopped, the
stepping process appears to hang. In parallel programs, this can occur
when you try to single-step a process over a communication operation that
cannot complete without the participation of another process. When this
happens, you can abort the single-step operation by selecting yes from the
question box that will appear. As an alternative, consider using a group-
level single-step command instead.
Version 5.0 TotalView Users Guide 271

2

Troubleshooting

Internal error in TotalView
Internal error in TotalView
Report this problem. See “Reporting Problems” on page xvi.

Invalid license key
Compare the format of your license.dat license key file with the one dis-
played in Chapter 2 of the TOTALVIEW INSTALLATION GUIDE. If you find stray
characters in the file (for example “=3D”), use a text editor to remove
them. After making these changes, stop the lmgrd license manager dae-
mon and then restart it using the toolworks_init script.

License manager does not operate correctly
Set the LM_LICENSE_FILE environment variable to the path name of the
TotalView license file. See the TOTALVIEW INSTALLATION GUIDE for details.

Out-of-memory error
g Increase the swap space on your machine. For details, see “Swap Space” on

page 323.

g Increase the data size limit in the C shell. Use the C shell’s limit com-
mand, such as:

% limit datasize unlimited

Pressing Ctrl-C in an xterm window causes TotalView to exit
Start TotalView by using the –ignore_control_c command-line option.

Program behaves differently under TotalView control: setuid issues
Make sure your program does not execute the setuid or exec functions or
invoke another program that does, for example, rsh. Normally, the operat-
ing system does not allow a debugger to debug a setuid executable nor al-
low a setuid system call while a program is being debugged. Often these
operations fail silently. To debug setuid programs, log in as the target UID
before starting TotalView.

Program behaves differently under TotalView control: SIGSTOP problems
TotalView uses the SIGSTOP signal to stop processes. On most UNIX sys-
tems, system calls can fail with errno set to EINTR when the process re-
ceives a SIGSTOP signal. You need to change your code so that it handles
EINTR failures. For example:

do {
n = read(fd,buf,nbytes);

} while (n < 0 && errno == EINTR);
72 TotalView Users Guide Version 5.0

Troubleshooting

Source code does not appear in Source Pane
When a system call is interrupted with a signal (for example, errno ==
EINTR), you need to retry it. This problem occurs because TotalView stops
processes when it updates the displays. If the process is in a system call, the
system call fails with EINTR.

For example, assume that your program has the following code fragment:

printf("creating scheduler thread...");
if (0 != (status = pthread_create(

&scheduler_thread, &detached_attr,
&scheduler_thread_wrapper, (void *)scheduler))) {

error_func(ERR_LVL, __FILE__, __LINE__,
"Pthread_create sScheduler, %d, %s",
status, strerror(status));

}

You could restructure it to:

printf("creating scheduler thread...");
do {

status = pthread_create(
&scheduler_thread, &detached_attr,
&scheduler_thread_wrapper, (void *)scheduler);

} while (0 != status && errno == EINTR);
if (0 != status) {

error_func(ERR_LVL, __FILE__, __LINE__,
"Pthread_create sScheduler, %d, %s",
status, strerror(status));

}

Program symbols are not shown
Check to make sure that you compiled your program using –g.

Single-stepping is slow or TotalView is slow to respond to breakpoints
g Close some of the Variable Windows that you have open.

g The Globals Window is open and has a large number of variables. Close
the Globals Window.

g If you set a breakpoint in a source file that has not yet been referenced or
if you single-step into one, TotalView must read the file’s symbol table.
This can temporarily delay TotalView’s response.

Source code does not appear in Source Pane
g Set the search path for directories with the File > Search Path command

in the Process Window.
Version 5.0 TotalView Users Guide 273

2

Troubleshooting

TotalView cannot find your source code
g TotalView may be in the kernel or in a library routine for which source is
not available.

TotalView cannot find your source code
Set the search path for directories with the File > Search Path command in
the Process Window.

TotalView server (tvdsvr) fails to start on a remote node
Edit the Server Launch string within the File > Preferences Launch Strings
Page, and relaunch the server. For information, see “Starting the TotalView De-
bugger Server” on page 61.

When debugging HPF programs, HPF source code does not appear in the
Process Window; only f77 code appears

When compiling HPF programs, be sure to set the –g and –Mtotalview op-
tions when compiling and linking your programs.

Windows do not appear or operate correctly
g Your DISPLAY environment variable is not set correctly.

g The resource totalview*useTransientFor on page 284 is not set correctly.
Change it from on to off, or from off to on.

g Use the xhost + command to allow all hosts to access your display.

X resources are not recognized
g Use the xrdb command (part of the X Window System) to display the cur-

rent X resources:
xrdb -query

g Use the xrdb command to load your X resources:
xrdb -load $HOME/.Xdefaults

g Read the xrdb manual page for more information.
74 TotalView Users Guide Version 5.0

Version 5.0
Chapter 12
X Resources
This chapter provides reference information about the X Window System re-
sources that you can use to customize TotalView or the TotalView Visualizer. You
can use these resources in your X resources files (such as .Xdefaults on UNIX sys-
tems or decw$sm_general.dat on VMS systems).

For information on X resources files, refer to the X Window System documenta-
tion that came with your machine or the X Window System User’s Guide, by O’Reilly
& Associates (ISBN 1–56592–015–5).

On most UNIX systems, you load your X resources file by using the xrdb com-
mand (part of the X Window System executables). For example:

xrdb –load $HOME/.Xdefaults

Topics in this chapter are:

g TotalView X Resources
g Visualizer X Resources

TotalView X Resources

You can override some of the resources with command-line options for the
totalview command, as described in Chapter 13 “TotalView Command Syntax”
on page 289.

NOTE You can specify an X resource on the command line by using the
–resource=value command-line option. For example, to set “totalview*stopAll” to
false, you could use the following command-line option: –stopAll=false. Note that
the string “totalview*” is omitted from the command line.
TotalView Users Guide 275

2

12
X Resources

Window Locations
Window Locations: Values for the location of windows are expressed as:

=widthxheight+x+y

where width is the width of the window in pixels, height is the height of the
window in pixels, x is the distance from the upper-left corner of the window
to the left screen edge in pixels, and y is the distance from the upper-left
corner of the window to the top screen edge in pixels. A value of -1 for x or
y indicates that the window should be centered in the screen with respect
to the x-axis or y-axis. If desired, you can express x or y as negative num-
bers to indicate the distance from the lower-right corner of the window to
the bottom screen edge or right screen edge instead of the distance from
the upper-left corner. A value of zero (0) indicates that TotalView should
use the default value. Also, you can supply just the size (width and height),
and TotalView will use the default location (x and y) with it.

As an example, the expression =0x0-1+20 uses the default width and
height, centers the window horizontally, and places the window 20 pixels
down from the top of the screen. The expression =330x120+20-20 makes
the window 330 pixels wide by 120 pixels high and places the window 20
pixels from the left edge of the screen and 20 pixels up from the bottom
edge of the screen.

totalview*autoRetraceAddresses: {on | off}

If on (default), TotalView will retrace the sequence of dive operations per-
formed in a Variable Window and recompute a new address for the variable.
If off, TotalView does not retrace addresses.

totalview*backgroundColor: color

Default: white

Sets the general background color to color.

totalview*compilerVars: {true | false}

Compaq Tru64 UNIX and SGI only. If false (default), TotalView does not
show variables created by the Fortran compiler. If true, TotalView shows
variables created by the Fortran compiler and the variables in the user’s
program.
76 TotalView Users Guide Version 5.0

X Resources

totalview*DPVMDebugging
Some Fortran compilers (Compaq f90/f77 and SGI 7.2 compilers) output
debug information that describes variables that the compiler itself has in-
vented for purposes such as passing the length of character*(*) variables.
By default, TotalView suppresses the display of these compiler-generated
variables; however, setting totalview*compilerVars to true tells TotalView
to display these variables. This could be useful if you are looking for a cor-
ruption of a runtime descriptor or are writing a compiler.

Override with: –compiler_vars option (overrides false)
–no_compiler_vars option (overrides true)

totalview*compileExpressions: {true | false}

Compaq Alpha UNIX and IBM AIX (default true), and MIPS IRIX (default
false) platforms only. If true, TotalView enables compiled expressions. If
false, TotalView disables compiled expressions and interprets them in-
stead.

totalview*cTypeStrings: {true | false}

If false (default), TotalView’s type string extensions are used when display-
ing the type strings for arrays. If true, C type string syntax are used when
displaying arrays.

totalview*displayAssemblerSymbolically: {on | off}

If off (default), display assembler locations as hexadecimal addresses. If
on, assembler locations are displayed as “label+offset.”

totalview*DPVMDebugging: {true | false}

Compaq Tru64 UNIX only.

If false (default), disables support for debugging the Digital UNIX imple-
mentation of Parallel Virtual Machine (DPVM) applications. If true, enables
support for debugging DPVM applications.

Override with: –dpvm option (overrides false)
–no_dpvm option (overrides true)
Version 5.0 TotalView Users Guide 277

2

12
X Resources

totalview*font
totalview*font: fontname

Default: fixed

Specifies the font used by the TotalView debugger. Use the X Windows-sup-
plied application xlsfonts to list the names of available fonts.

totalview*foregroundColor: color

Default: black

Sets the general foreground color (that is, the text color) to color.

totalview*globalTypenames: {true | false}

If true (default), specifies that TotalView can assume that type names are
globally unique within a program and that all type definitions with the same
name are identical. In C++, the standard asserts that this must be true for
standard conforming code.

If this option is true, TotalView attempts to replace an opaque type (struct
foo *p;) declared in one module with an identically named defined type
(struct foo { … };) in a different module.

If TotalView has read the symbols for the module containing the non-
opaque type definition, then when displaying variables declared with the
opaque type, TotalView will automatically display the variable by using the
non-opaque type definition.

If false, TotalView will not assume that type names are globally unique
within a program. You should specify this option if your code has different
definitions of the same named type since, otherwise, TotalView is likely to
pick the wrong definition to substitute for an opaque type.

Override with: –global_types option (overrides false)
–no_global_types option (overrides true)

totalview*hpf: {true | false}

If true (default, if HPF debugging has been licensed), enables debugging at
the HPF source level.
78 TotalView Users Guide Version 5.0

X Resources

totalview*kccClasses
Setting this X resource to false causes TotalView to ignore .stx and .stb
files, and therefore to debug HFP code at the intermediate (Fortran 77)
level.

Override with: –hpf option (overrides false)
–no_hpf option (overrides true)

totalview*hpfNode: {true | false}

If false (default), the node on which an HPF distributed array element re-
sides is not displayed in the Process Window.

The node display can be toggled in each Variable Window by using the
Toggle Node Display option in the Process Window menu.

Override with: –hpf_node option (overrides false)
–no_hpf_node option (overrides true)

totalview*kccClasses: {true | false}

If set to true, (default) TotalView will convert structure definitions output by
the KCC compiler into classes that show base classes and virtual base
classes in the same way as other C++ compilers. When set to false, the
debugger will not convert structure definitions output by the KCC compiler
into classes. Virtual bases will show up as pointers rather than as the data.

Unfortunately, the conversion has to be done by textual matching of the
names given to structure members, so it can be confusing if you have
structure component names that look to TotalView like KCC processed
classes. However, the conversion is never performed unless TotalView be-
lieves that the code was compiled with KCC, because TotalView has seen
one of the tag strings that KCC outputs, or because the user has asked for
the KCC name demangler to be used. Also all of the recognized structure
component names start with “_ _”, and, according to the C standard, user
code should not contain names with this prefix.

Note that under some circumstances it is not possible to convert the origi-
nal type names because there is no available type definition. For example,
it may not be possible to convert “struct __SO_foo” to “struct foo”, so in
this case the “__SO_foo” type will be shown. This is only a cosmetic prob-
Version 5.0 TotalView Users Guide 279

2

12
X Resources

totalview*parallelAttach
lem. (The “__SO__” prefix denotes a type definition for the nonvirtual com-
ponents of a class with virtual bases).

Since KCC outputs no information on the accessibility of base classes (“pri-
vate”, “protected”, “public”), TotalView is unable to provide this informa-
tion.

totalview*parallelAttach: { yes | no | ask }

Tells TotalView what it should do when it can automatically attach to pro-
cesses. Your choices are as follows:

g yes: Attach to all started processes.

g no: Do not attach to any started processes.

g ask: Display a dialog box listing the processes to which TotalView can
attach and let the user decide which ones TotalView should attach to.

totalview*parallelStop: { yes | no | ask }

Tells TotalView if it should automatically run processes when your program
launches them. Your choices are as follows:

g yes: Stop the processes before they begin executing.

g no: Do not interfere with the processes; that is , let them run.

g ask: Display a question box asking what it should do.

totalview*patchAreaAddress: address

Allocates the patch space dynamically at the given address. See “Allocating
Patch Space for Compiled Expressions” on page 221.

totalview*patchAreaLength: length

Sets the length of the dynamically allocated patch space to the specified
length. See “Allocating Patch Space for Compiled Expressions” on page 221.

totalview*popAtBreakpoint: {on | off}

If on, sets the Open (or raise) process window at breakpoint check box to
be selected by default. If off (default), sets that check box to be deselected
by default. See “Handling Signals” on page 45.
80 TotalView Users Guide Version 5.0

X Resources

totalview*signalHandlingMode
Override with: –pop_at_breakpoint option (overrides off)
–no_pop_at_breakpoint option (overrides on)

totalview*popOnError: {on | off}

If on (default), sets the Open process window on error signal check box
within the File > Preference’s Option Page to be selected by default. If off,
sets that check box to be deselected by default. See “Handling Signals” on
page 45 for more information.

Override with: –pop_on_error option (overrides off)
–no_pop_on_error option (overrides on)

totalview*pvmDebugging: {true | false}

If false (default), disables support for debugging the ORNL implementation
of Parallel Virtual Machine (PVM) applications. If true, enables support for
debugging PVM applications.

Override with: –pvm option (overrides false)
–nopvm option (overrides true)

totalview*searchCaseSensitive: {on | off}

If off (default), searching for strings is not case sensitive. If on, searches are
case- sensitive.

totalview*searchPath: dir1[,dir2,...]

Specifies a list of directories for the debugger to search when looking for
source and object files. This resource serves the same purpose as the File
> Search Path command in the Process Window (see “Setting Search Paths”
on page 48). If you use multiple lines, place a backslash (\) at the end of
each line, except for the last line.

totalview*signalHandlingMode: action_list

Modifies the way in which TotalView handles signals. An action_list consists
of a list of signal_action descriptions, separated by spaces:

signal_action[signal_action] ...
Version 5.0 TotalView Users Guide 281

2

12
X Resources

totalview*signalHandlingMode
A signal_action description consists of an action, an equal sign (=), and a
list of signals:

action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard. For
more information on the meaning of each action, refer to “Handling Signals”
on page 45.

A signal_list is a list of one or more signal specifiers, separated by commas:

signal_specifier[,signal_specifier] …

A signal_specifier can be a signal name (such as SIGSEGV), a signal number
(such as 11), or a star (*), which specifies all signals. We recommend using
the signal name rather than the number because number assignments vary
across UNIX versions.

The following rules apply when you are specifying an action_list:

g If you specify an action for a signal in an action_list, TotalView changes
the default action for that signal.

g If you do not specify a signal in the action_list, TotalView does not change
its default action for the signal.

g If you specify a signal that does not exist for the platform, TotalView
ignores it.

g If you specify an action for a signal twice, TotalView uses the last action
specified. In other words, TotalView applies the actions from left to right.

If you need to revert the settings for signal handling to TotalView’s built-in
defaults, use the Defaults button in the File > Signals dialog box.

For example, to set the default action for the SIGTERM signal to Resend, you
specify the following action list:

“Resend=SIGTERM”

As another example, to set the action for SIGSEGV and SIGBUS to Error, the
action for SIGHUP and SIGTERM to Resend, and all remaining signals to
Stop, you specify the following action list:

“Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP,SIGTERM”

This action list shows how TotalView applies the actions from left to right.
82 TotalView Users Guide Version 5.0

X Resources

totalview*userThreads
1 Sets the action for all signals to Stop.

2 Changes the action for SIGSEGV and SIGBUS from Stop to Error.

3 Changes the action for SIGHUP and SIGTERM from Stop to Resend.

totalview*sourcePaneTabWidth: n
Default: 8

Sets the width of the tab character that is displayed in the Source Pane. For
example, if your source file uses a tab width of 4, set n to 4.

totalview*spellCorrection: {verbose | brief | none}

When you use the Function or File... or Variable... commands in the Pro-
cess Window or edit a type string in a Variable Window, the debugger checks
the spelling of your entries. By default (verbose), the debugger displays a
dialog box before it corrects spelling. You can set this resource to brief to
run the spelling corrector silently. (The debugger makes the spelling correc-
tion without displaying it in a dialog box first.) You can also set this re-
source to none to disable the spelling corrector.

totalview*useInterface: name

Sets the interface name that the server uses when it makes a callback. For
example, on an IBM PS2 machine, the following resource setting sets the
callback to use the hardware option:

totalview*useInterface:css0

However, TotalView will let you use any legal inet interface name. (You can
obtain a list of the interfaces if you use the netstat -i command.)

totalview*userThreads: {true | false}

If set to true (default), enables handling of user-level (M:N) thread packages
on systems where two-level (kernel and user) thread scheduling is sup-
ported. If set to false, TotalView disables handling of user-level (M:N)
thread packages. Disabling thread support may be useful in situations
Version 5.0 TotalView Users Guide 283

2

12
X Resources

totalview*useTransientFor
where you need to debug kernel-level threads, but in most cases, this op-
tion is of little use on systems where two-level thread scheduling is used.

Override with: –user_threads option (overrides false)
–no_user_threads option (overrides true)

totalview*useTransientFor: {on | off}

If off, TotalView sets the “override redirect” property for windows. This
property does not let you use the window manager to perform operations
such as raising and lowering dialog boxes. If you use an advanced window
manager, you can use the on option (default) which lets TotalView use
“transient-for” type windows. This property allows you to use the window
manager to perform operations on dialog boxes. If you are using an X11R4
or more recent server and window manager, you should use the on option.
If you’re using Compaq’s window manager, you should use the off option.

totalview*verbosity: {silent | error | warning | info}

Default: info

Sets the verbosity level of TotalView-generated messages.

Visualizer X Resources

The TotalView Visualizer uses a large number of X resources that are set up
in its application defaults file. The X resources documented are a subset of
those found in the application defaults file as they are the only ones that
can be customized to your preferences. Setting them in your own X re-
sources file overrides the application defaults file.

The default values of the X resources are listed here shown either in a bold
typeface in a list of alternative values, or separately if there can be a range
of values. They are the settings in the applications defaults file as it is
shipped. Your site administrator can edit this file to set the site defaults;
therefore, your site may have different defaults.
84 TotalView Users Guide Version 5.0

X Resources

Visualize*graph*points.set
Visualize*data*pick_message.background: color

Default: light yellow

Sets the color of the pick pop-up window.

Visualize*directory*auto_visualize.set: {1 | 0}

Sets the initial state of the autovisualize option in the Directory Window. If
set (1), when a new dataset is added to the list, it will be visualized auto-
matically using an appropriate method. If cleared (0), the new dataset will
not be displayed automatically, and you will have to choose a visualization
method for it.

Visualize*directory.height: height

Default: 100

Sets the initial height of the Directory Window.

Visualize*directory.width: width

Default: 300

Sets the initial width of the Directory Window.

Visualize*graph.height: height

Default: 400

Sets the initial height of the Graph Window.

Visualize*graph.width: width

Default: 400

Sets the initial width of the Graph Window.

Visualize*graph*lines.set: {1 | 0}

Sets the initial state of the lines option in the Graph Window. When set (1),
graphs are drawn with lines connecting the data points.

Visualize*graph*points.set: {1 | 0}

Sets the initial state of the points option in the Graph Window. When set
(1), graphs are drawn with markers on each data point.
Version 5.0 TotalView Users Guide 285

2

12
X Resources

Visualize*surface.height
Visualize*surface.height: height

Default: 400

Sets the initial height of the Surface Window.

Visualize*surface.width: width

Default: 400

Sets the initial width of the Surface Window.

Visualize*surface*mesh.set: {1 | 0}

Sets the initial state of the mesh option in the Surface Window. When set
(1), the axis grid is projected onto the surface.

Visualize*surface*shade.set: {1 | 0}

Sets the initial state of the shade option in the Surface Window. When set
(1), the surface is shaded.

Visualize*surface*contour.set: {1 | 0}

Sets the initial state of the contour option in the Surface Window. When set
(1), contours are displayed on the surface.

Visualize*surface*auto_reduce.set: {1 | 0}

Sets the initial state of the autoreduce option in the Surface Window. When
set (1), large datasets are reduced by averaging to speed display.

Visualize*surface*xrt3dZoneMethod: {zonecontours | zonecells}

Specifies how the surface is colored. When set to zonecontours, the sur-
face is colored according to its contours. When set to zonecells, each cell
in the mesh is colored based on the average value in the cell.

Visualize*surface*xrt3dViewNormalized: {1 | 0}

When set (1), the view of the dataset (before zooming or translation) is
maximized to fit the window. Interactive rotation when this resource is set
will look “jerky” but will ensure no portion of the display is clipped. When
this resource is cleared (0), dynamic rotation will be smooth, but parts of
the display (for example, axes) may be clipped at some viewing angles.
86 TotalView Users Guide Version 5.0

X Resources

Visualize*surface*zone.set
Visualize*surface*xrt3dXMeshFilter: n
Default: 0

Specifies how to display the surface mesh. Every nth mesh line will be dis-
played, where n must be an integer greater than or equal to 0. When set to
0, a value is calculated automatically.

Visualize*surface*xrt3dYMeshFilter: n
Default: 0

Specifies how to display the surface mesh. Every nth mesh line will be dis-
played, where n must be an integer greater than or equal to 0. When set to
0, a value is calculated automatically.

Visualize*surface*zone.set: {1 | 0}

Sets the initial state of the zone option in the Surface Window. When set
(1), the surface is colored according to the value.
Version 5.0 TotalView Users Guide 287

2

12
X Resources

Visualize*surface*zone.set
88 TotalView Users Guide Version 5.0

Version 5.0
Chapter 13
TotalView Command Syntax
This chapter describes the syntax of the totalview command. Topics in this chap-
ter are:

g Syntax
g Options

Syntax

Synopsis: totalview [filename [corefile]] [options]

Description: The TotalView debugger is a source-level debugger with a
graphic interface (based on the X Window System) and features for debug-
ging distributed programs, multiprocess programs, and multithreaded pro-
grams. You need a workstation or terminal running the X Window System to
use TotalView. TotalView is available on a number of different platforms.

Arguments:

filename Specifies the path name of the executable being de-
bugged. This can be an absolute or relative path name.
The executable must be compiled with debugging sym-
bols turned on, normally the –g compiler option. Any
multiprocess programs that call fork(), vfork(), or
execve() should be linked with the dbfork library.

corefile Specifies the name of a core file. Specify this argument
in addition to filename when you want to examine a core
file with TotalView:

totalview filename corefile [options]
TotalView Users Guide 289

2

13
TotalView Command Syntax

–a args
Using Options : If you specify mutually exclusive options on the
same command line (for example, –dynamic and –no_dynamic), the last
option listed is used. Some of these options override TotalView X resources
described in “X Resources” on page 275. If an option contains underscores
(_), you can usually omit the underscores. For example, –nodynamic is the
same as –no_dynamic; similarly –arrowbgcolor and –arrow_bg_color are
the same.

NOTE The option –Xresource=value option allows you to set the X resource Xresource
to value from the command line. For example, to set “totalview*stopAll” to false,
you could specify the command-line option –stopAll=false. Note that the string
“totalview*” is omitted from the command line. X resource values set from the com-
mand line override settings in your X resource file. For a complete list of X resources,
see Chapter 12 “X Resources” on page 275.

Options

–a args Passes all subsequent arguments (specified by args) to
the program specified by filename. This option must be
the last one on the command line.

–ask_on_dlopen (Default) TotalView will ask you about stopping pro-
cesses that dynamically load a new shared library by
using the dlopen or load (AIX only) system calls. See
“Debugging Dynamically Loaded Libraries” on page 331.

–no_ask_on_dlopen
TotalView will not ask you about stopping processes
that dynamically load a new shared library by using the
dlopen or load (AIX only) system calls. See “Debugging
Dynamically Loaded Libraries” on page 331.

–background color Sets the general background color to color.

Default: white

–bg color Same as –background.

–barr_stop_all (Default) Enables process barrier breakpoints to stop
all related processes.
90 TotalView Users Guide Version 5.0

TotalView Command Syntax

–bulk_launch_tmpfile1_trailer_string string
–no_barr_stop_all
The process barrier breakpoint does not stop all related
processes.

–bulk_launch_base_timeout time_in_seconds
Sets the time to wait before giving up trying to estab-
lish the connections. The total timeout is calculated as
a base value (this option), in addition to an amount for
each server launched. That time is specified using the –
bulk_launch_incr_timeout value.

–bulk_launch_incr_timeout time_in_seconds
Sets the time to wait before giving up trying to estab-
lish the connections. The total timeout is calculated as
a base value (indicated with the
–bulk_launch_base_timeout command) and an
amount for each server launched (this option).

–bulk_launch_string string
Defines the launch string used to launch the bulk
server. See the Bulk Launch Page within the File >
Preferences dialog box for more information.

–bulk_launch_tmpfile1_header string
Defines the first temporary header file that will be cre-
ated during a bulk server launch. See the Bulk Launch
Page within the File > Preferences dialog box for more
information.

–bulk_launch_tmpfile1_host_string string
Defines the first host string sent to the remote process
during a bulk server launch. See the Bulk Launch Page
within the File > Preferences dialog box for more infor-
mation.

–bulk_launch_tmpfile1_trailer_string string
Defines the first temporary trailer file that will be cre-
ated during a bulk server launch. See the Bulk Launch
Page within the File > Preferences dialog box for more
information.
Version 5.0 TotalView Users Guide 291

2

13
TotalView Command Syntax

–bulk_launch_tmpfile2_header_string string
–bulk_launch_tmpfile2_header_string string
Defines the second temporary header file that will be
created during a bulk server launch. See the Bulk
Launch Page within the File > Preferences dialog box
for more information.

–bulk_launch_tmpfile2_host_string string
Defines the second host string sent to the remote pro-
cess during a bulk server launch. See the Bulk Launch
Page within the File > Preferences dialog box for more
information.

–bulk_launch_tmpfile2_trailer_string string
Defines the second temporary trailer file that will be
created during a bulk server launch. See the Bulk
Launch Page within the File > Preferences dialog box
for more information.

–compiler_vars (Alpha, HP, and SGI only.) Shows variables created by
the Fortran compiler, as well as those in the user’s pro-
gram.

–no_compiler_vars
(Default) Does not show variables created by the For-
tran compiler.

Some Fortran compilers (Compaq f90/f77, HP f90, SGI
7.2 compilers) output debug information that de-
scribes variables the compiler itself has invented for
purposes such as passing the length of character*(*)
variables. By default, TotalView suppresses the display
of these compiler-generated variables.

However, you can specify the –compiler_vars option
or set the totalview*compilerVars X resource to true
to cause such variables to be displayed. This could be
useful if you are looking for a corruption of a runtime
descriptor or are writing a compiler.

–dbfork (Default) Catches the fork(), vfork(), and execve() sys-
tem calls if your executable is linked with the dbfork li-
brary.
92 TotalView Users Guide Version 5.0

TotalView Command Syntax

–display displayname
–no_dbfork Does not catch fork(), vfork(), and execve() system
calls even if your executable is linked with the dbfork
library.

–debug_file consoleoutputfile
Redirects TotalView console output to a file named con-
soleoutputfile.

Default: All TotalView console output is written to
stderr.

–demangler=compiler
Overrides the C++ demangler and mangler TotalView
uses by default. The following table lists override op-
tions.

–display displayname
Sets the name of the X Windows display to displayname.
For example, –display vinnie:0.0 will display TotalView
on the machine named “vinnie.”

Default: To the value of the DISPLAY environment
variable.

TABLE 22: Demangling Command-Line Options

Option Meaning
–demangler=compaq Compaq cxx on Linux (alpha)
–demangler=cset IBM CSet++
–demangler=dec Compaq Tru64 C++
–demangler=gnu GNU C++
–demangler=hp HP aCC compiler
–demangler=irix SGI IRIX C++
–demangler=kai KAI C++
–demangler=kai3_n KAI C++ version 3.n
–demangler=spro SunPro C++ 4.0 or 4.2
–demangler=spro5 SunPro C++ 5.0 or later
–demangler=sun Sun CFRONT C++
Version 5.0 TotalView Users Guide 293

2

13
TotalView Command Syntax

–dll_ignore_prefix list
–dll_ignore_prefix list
The colon-separated argument to this option tells
TotalView that it should ignore files having this prefix
when making a decision to ask about stopping the pro-
cess when it dllopens a dynamic library. If the DLL being
opened has any of the entries on this list as a prefix,
the question is not asked.

–dll_stop_suffix list The colon-separated argument to this option tells
TotalView that if the library being opened has any of
the entries on this list as a suffix, it should ask if it
should open the library.

–dpvm Compaq Tru64 UNIX only: Enables support for debug-
ging the Compaq Tru64 UNIX implementation of Paral-
lel Virtual Machine (PVM) applications.

–no_dpvm Compaq Tru64 UNIX only: (Default) Disables support
for debugging the Compaq Tru64 UNIX implementa-
tion of PVM applications.

–dump_core Allows TotalView to dump a core file when it gets an in-
ternal error. Useful for debugging TotalView itself.

–no_dumpcore (Default) Does not allow TotalView to dump a core file
when it gets an internal error.

–dynamic (Default) Loads symbols from shared libraries. This op-
tion is available only on platforms that support shared
libraries.

–no_dynamic Does not load symbols from shared libraries when
reading dynamically linked executables. Setting this
option can cause the dbfork library to fail because
TotalView might not find the fork(), vfork(), and
execve() system calls.

–editor_launch_string string
Defines the launch string used to launch a text editor
when you select the Process Window’s File > Edit
Source command. See the Launch Strings page within
the File > Preferences dialog box for more informa-
tion.
94 TotalView Users Guide Version 5.0

TotalView Command Syntax

–global_types
–ext extension Specifies that files with the suffix extension are prepro-
cessor input files. TotalView already has built-in exten-
sions for C++ (.C, .cpp, .cc, .cxx), Fortran (.F), lex (.l,
.lex), and yacc (.y) files.

–fixed_font_family fontname
Specifies the fixed-width font that TotalView uses when
displaying your source code and other similar informa-
tion. Use the –fixed_font_size option to specify the
size at which this font is displayed.

It is usually better to specify this family by using a
TotalView preference.

–fixed_font_size number
Specifies the size at which TotalView displays the font
indicated with -fixed_font_family option.

It is usually better to specify this size by using a
TotalView preference.

–foreground color Sets the general foreground color (that is, the text
color) to color.

Default: black

–fg color Same as –foreground.

–global_types (Default) Specifies that TotalView can assume that type
names are globally unique within a program and that
all type definitions with the same name are identical. In
C++, the standard asserts that this must be true for
standard conforming code.

If this option is set, TotalView will attempt to replace an
opaque type (struct foo *p;) declared in one module,
with an identically named defined type in a different
module.

If TotalView has read the symbols for the module con-
taining the non-opaque type definition, then when dis-
playing variables declared with the opaque type,
TotalView will automatically display the variable by us-
ing the non-opaque type definition.
Version 5.0 TotalView Users Guide 295

2

13
TotalView Command Syntax

–no_global_types
–no_global_types Specifies that TotalView cannot assume that type
names are globally unique within a program. You
should specify this option if your code has multiple dif-
ferent definitions of the same named type, since oth-
erwise TotalView is likely to pick the wrong definition to
substitute for an opaque type.

–hpf (Default) Enables debugging HPF code at the source
level.

–no_hpf Disables debugging HPF source code at the source
level.

–hpf_node Enables display of the node on which the HPF distrib-
uted array element resides in the Process Window.

–no_hpf_node (Default) Disables display of the node on which the
HPF distributed array element resides in the Process
Window.

–ignore_control_c Ignores Ctrl-C and prevents you from terminating the
TotalView process from an xterm window, which is use-
ful when your program catches the Ctrl-C signal
(SIGINT).

–icc Same as –ignore_control_c.

–no_ignore_control_c
(Default) Catches Ctrl-C and terminates your TotalView
debugging session. To override this, use
–ignore_control_c.

–nicc Same as –no_ignore_control_c.

–kcc_classes (Default) Converts structure definitions output by the
KCC compiler into classes that show base classes, and
virtual base classes in the same way as other C++
compilers. See the description of the X resource
totalview*kccClasses on page 279 for a description of
the conversion performed by TotalView.

–no_kcc_classes
Specifies that TotalView will not convert structure defi-
nitions output by the KCC compiler into classes. Virtual
bases will show up as pointers, rather than the data.
96 TotalView Users Guide Version 5.0

TotalView Command Syntax

–parallel_stop argument
–lb (Default) Loads action points automatically from the
filename.TVD.breakpoints file, providing the file exists.

–nlb Does not load action points automatically from an ac-
tion points file.

–message_queue (Default) Enables the display of MPI message queues
when debugging an MPI program.

–mqd Same as –message_queue.

–no_message_queue
Disables the display of MPI message queues when de-
bugging an MPI program. This might be useful if a store
corruption is overwriting the message queues and
causing TotalView to become confused.

–no_mqd Same as –no_message_queue.

–parallel (Default) Enables handling of parallel program runtime
libraries such as MPI, PE, and HPF.

–no_parallel Disables handling of parallel program runtime libraries
such as MPI, PE, and HPF. This is useful for debugging
parallel programs as if they were single-process pro-
grams.

–parallel_attach argument
Tells TotalView what is should do when automatically
attaching to processes. The values you can enter are:

yes (attach to all started processes)

no (do not attach to any started process

ask (display a dialog box listing the processes and let
the user decide which ones TotalView should attach to)

–parallel_stop argument
Tells TotalView if it should automatically run processes
when your program launches them. The values you can
enter are:

yes (stop the processes before they begin executing)

no (do not interfere with the processes; that is, let
them run)

ask (display a question box asking what it should do)
Version 5.0 TotalView Users Guide 297

2

13
TotalView Command Syntax

–patch_area_base address
–patch_area_base address
Allocates the patch space dynamically at the given ad-
dress. See “Allocating Patch Space for Compiled Expressions”
on page 221.

–patch_area_length length
Sets the length of the dynamically allocated patch
space to the specified length. See “Allocating Patch Space
for Compiled Expressions” on page 221.

–pop_at_breakpoint
Sets the Open (or raise) process window at
breakpoint check box to be selected by default. See
“Handling Signals” on page 45.

–no_pop_at_breakpoint
(Default) Sets the Open (or raise) process window at
breakpoint check box to be deselected by default.

–pop_on_error (Default) Sets the Open (or raise) process window on
error check box to be selected by default. See “Han-
dling Signals” on page 45.

–no_pop_on_error
Sets the Open (or raise) process window on error
check box to be deselected by default.

–pvm Enables support for debugging the ORNL implementa-
tion of Parallel Virtual Machine (PVM) applications.

–no_pvm (Default) Disables support for debugging the ORNL im-
plementation of PVM applications.

–remote hostname[:portnumber]
Debugs an executable that is not running on the same
machine as TotalView. For hostname, you can specify a
TCP/IP host name (such as vinnie) or a TCP/IP address
(such as 128.89.0.16). Optionally, you can specify a
TCP/IP port number for portnumber, such as :4174.
When you specify a port number, you disable the auto-
launch feature. For more information on the auto-
launch feature, see “Single Process Server Launch
Command” on page 66.
98 TotalView Users Guide Version 5.0

TotalView Command Syntax

–stop_all
–r hostname[:portnumber]
Same as –remote.

–s pathname Specifies the path name of a startup file that will be
loaded and executed. This path name can either be an
absolute or relative name. You can find information on
the contents of this start-up file in the CLI GUIDE.

–sb Saves action points automatically to an action points
file when you exit TotalView. The file is named file-
name.TVD.breakpoints.

–nsb (Default) Does not save action points automatically to
an action points file when you exit.

–serial device[:options]
Debugs an executable that is not running on the same
machine as TotalView. For device, specify the device
name of a serial line, such as /dev/com1. Currently, the
only option you are allowed to specify is the baud rate,
which defaults to 38400. For more information on de-
bugging over a serial line, see “Debugging Over a Serial
Line” on page 72.

–server_launch_string string
Defines the launch string used to launch a remote
server. See the Launch Strings Page within the File >
Preferences dialog box for more information.

–signal_handling_mode “action_list”
Modifies the way in which TotalView handles signals.
You must enclose the action_list string in quotation
marks to protect it from the shell. Refer to
totalview*signalHandlingMode on page 281 for a de-
scription of the action_list argument.

–shm “action_list” Same as –signal_handling_mode.

–stop_all (Default) Sets the Stop All Related Processes when
Breakpoint Hit check box to be selected by default. To
override this option use –no_stop_all. See “Breakpoints
for Multiple Processes” on page 209.
Version 5.0 TotalView Users Guide 299

3

13
TotalView Command Syntax

–ui_font_family fontname
–no_stop_all Sets the Stop All Related Processes when Breakpoint
Hit check box to be deselected by default.

–ui_font_family fontname
Specifies the variable-width font that TotalView uses.
Use the –ui_font_size option to specify the size at
which this font is displayed.

It is usually better to specify this family by using a
TotalView preference.

–ui_font_size number
Specifies the size at which TotalView displays the font
indicated with –ui_font_family option.

It is usually better to specify this size using a TotalView
preference.

–user_threads (Default) Enables handling of user-level (M:N) thread
packages on systems where two-level (kernel and user)
thread scheduling is supported.

–no_user_threads
Disables handling of user-level (M:N) thread pack-
ages. This option may be useful in situations where
you need to debug kernel-level threads, but in most
cases, this option is of little use on systems where two-
level thread scheduling is used.

–verbosity level Sets the verbosity level of TotalView-generated mes-
sages to level, which may be one of silent, error,
warning, or info.

Default: info

–visualizer_launch_string string
Defines the launch string used to launch a visualizer
when you select the Tools > Visualize command
within the Variable Window or when TotalView encoun-
ters a $visualize intrinsic when it is evaluating an ex-
pression. See the Launch Strings Page within the
File > Preferences dialog box for more information.
00 TotalView Users Guide Version 5.0

TotalView Command Syntax

–visualizer_max_rank number
–visualizer_max_rank number
Specifies the number of array dimensions that are sent
to a visualizer. If you are using TotalView’s Visualizer,
this value cannot be greater than 2. The maximum
value you can specify is 16.
Version 5.0 TotalView Users Guide 301

3

13
TotalView Command Syntax

–visualizer_max_rank number
02 TotalView Users Guide Version 5.0

Version 5.0
Chapter 14
TotalView Debugger Server (tvdsvr)
Command Syntax
This chapter summarizes the syntax of the TotalView Debugger Server com-
mand, tvdsvr, which is used for remote debugging. For more information on
remote debugging, refer to “Starting the TotalView Debugger Server” on page
61.

Topics in this chapter are:

g The tvdsvr Command and Its Options
g Replacement Characters

The tvdsvr Command and Its Options

Synopsis: tvdsvr {–server | –callback hostname:port | –serial device}
[other options]

Description: The tvdsvr debugger server allows TotalView to control
and debug a program on a remote machine. To accomplish this, the tvdsvr
program must run on the remote machine, and it must have access to the
executables to be debugged. These executables must have the same abso-
lute path name as the executable that TotalView is debugging, or the PATH
environment variable for tvdsvr must include the directories containing the
executables.

You must specify either the –server, –callback, or –serial option with the
tvdsvr command. By default, the TotalView debugger automatically
TotalView Users Guide 303

3

14
TotalView Debugger Server (tvdsvr) Command Syntax

–callback hostname:port
launches tvdsvr (known as the autolaunch feature) with the –callback op-
tion, and the server establishes a connection with TotalView.

If you prefer not to use the autolaunch feature, you can start tvdsvr manu-
ally and specify the –server option. Be sure to note the password that
tvdsvr prints out with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By default, tvdsvr
automatically generates a password that is used when establishing connec-
tions. If desired, you can use the –set_pw option to set a specific pass-
word.

To connect to the tvdsvr from TotalView, you use the Fille > New Program
dialog box and must specify the host name and TCP/IP port number, host-
name:portnumber on which tvdsvr is running. Then, TotalView prompts you
for the password for tvdsvr.

Options: The following options determine the port number and pass-
word necessary for TotalView to connect with tvdsvr.

–callback hostname:port
(Autolaunch feature only) Immediately establishes a
connection with a TotalView process running on host-
name and listening on port, where hostname is either a
host name or TCP/IP address. If tvdsvr cannot con-
nect with TotalView, it exits.

If you use the –port, –search_port, or –server options
with this option, tvdsvr ignores them.

–callback_host hostname
Names the host upon which the callback is made.
hostname indicates the machine upon which TotalView
is running. This option is most often used with a bulk
launch.

–callback_ports port-list
Names the ports on the host machines that are used
for callbacks. The port-list argument contains a
04 TotalView Users Guide Version 5.0

TotalView Debugger Server (tvdsvr) Command Syntax

–search_port
comma-separated list of the host names and TCP/IP
port numbers (hostname:port,hostname:port...) on which
TotalView is listening for connections from tvdsvr. This
option is most often used with a bulk launch.

–debug_file consoleoutputfile
Redirects TotalView Debugger Server console output
to a file named consoleoutputfile.

Default: All console output is written to stderr.

–dpvm Uses the Compaq Tru64 UNIX implementation of the
Parallel Virtual Machine (DPVM) library process as its
input channel and registers itself as the DPVM tasker.

NOTE This option is not intended for users launching
tvdsvr manually. When you enable DPVM support within
TotalView, TotalView automatically uses this option when
it launches tvdsvr.

–port number Sets the TCP/IP port number on which tvdsvr should
communicate with totalview. If this TCP/IP port num-
ber is busy, tvdsvr does not select an alternate port
number (that is, it communicates with nothing) unless
you also specify –search_port.

Default: 4142

–pvm Uses the ORNL implementation of the Parallel Virtual
Machine (PVM) library process as its input channel
and registers itself as the ORNL PVM tasker.

NOTE This option is not intended for users launching
tvdsvr manually. When you enable PVM support within
TotalView, TotalView automatically uses this option when
it launches tvdsvr.

–search_port Searches for an available TCP/IP port number, begin-
ning with the default port (4142) or the port set with
the –port option and continuing until one is found.
When the port number is set, tvdsvr displays the cho-
sen port number with the following message:

port = number
Version 5.0 TotalView Users Guide 305

3

14
TotalView Debugger Server (tvdsvr) Command Syntax

–serial device[:options]
Be sure that you remember this port number, since
you will need it when you are connecting to this server
from TotalView.

–serial device[:options]
Waits for a serial line connection from TotalView. For
device, specify the device name of a serial line, such as
/dev/com1. The only option you can specify is the baud
rate, which defaults to 38400. For more information
on debugging over a serial line, see “Debugging Over a
Serial Line” on page 72.

–server Listens for and accepts network connections on port
4142 (default).

Using –server can be a security problem. Conse-
quently, you must explicitly enable this feature by
placing an empty file named tvdsvr.conf in your /etc
directory. This file must be owned by user ID 0 (root).
When tvdsvr encounters this option, it checks if this
file exists. This file’s contents are ignored.

You can use a different port by specifying either –port
or –search_port. To stop tvdsvr from listening and ac-
cepting network connections, you must terminate it
by pressing Ctrl-C in the terminal window from which
it was started or by using the kill command.

–set_pw hexnumhigh:hexnumlow
Sets the password to the 64-bit number specified by
the two 32-bit numbers hexnumhigh and hexnumlow.
When a connection is established between tvdsvr and
TotalView, the 64-bit password passed by TotalView
must match the password set with this option. When
the password is set, tvdsvr displays the selected num-
ber in the following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid connec-
tions by other users.

NOTE If necessary, you can disable password checking
by specifying the “–set_pw 0:0” option with the tvdsvr
command. Disabling password checking is dangerous; it
06 TotalView Users Guide Version 5.0

TotalView Debugger Server (tvdsvr) Command Syntax

–working_directory directory
allows anyone to connect to your server and start pro-
grams, including shell commands, using your UID.
Therefore, we do not recommend disabling password
checking.

–set_pws password-list
Sets 64-bit passwords. TotalView must supply these
passwords when tvdsvr establishes the connection
with it. The argument to this command is a comma-
separated list of passwords that TotalView automati-
cally generates. This option is most often used with a
bulk launch.

–verbosity level Sets the verbosity level of TotalView Debugger Server-
generated messages to level, which may be one of
silent, error, warning, or info.

Default: info

–working_directory directory
Makes directory the directory to which TotalView will be
connected.

Note that the command assumes that the host ma-
chine and the target machine mount identical file sys-
tems. That is, the path name of the directory to which
TotalView is connected must be identical on both the
host and target machines.

After performing this operation, the TotalView Debug-
ger Server is started.

Replacement Characters
When placing a tvdsvr command within a Server Launch or Bulk Launch
string (see File > Preferences for more information), you will need to use
special replacement characters. When your program needs to launch a re-
mote process, TotalView replaces these command characters with what
they represent. Here are the replacement characters:
Version 5.0 TotalView Users Guide 307

3

14
TotalView Debugger Server (tvdsvr) Command Syntax

%C
%C Is replaced by the name of the server launch com-
mand being used. On most platforms, this is rsh. On
HP, this command is remsh. If the
TVDSVRLAUNCHCMD environment variable exists,
TotalView will use its value instead of its platform-spe-
cific value.

%D Is replaced by the absolute path name of the directory
to which TotalView will be connected.

%H Expands to the host name of the machine upon which
TotalView is running. (This replacement character is
most often used in bulk server launch commands.
However, it can be used in a regular server launch and
within a tvdsvr command contained within a tempo-
rary file.)

%L If TotalView is launching one process, this is replaced
by the host name and TCP/IP port number (host-
name:port) on which TotalView is listening for connec-
tions from tvdsvr.

If a bulk launch is being performed, TotalView replaces
this with a comma-separated list of the host names
and TCP/IP port numbers (hostname:port,host-
name:port...) on which TotalView is listening for connec-
tions from tvdsvr.

%N Is replaced by the number of servers that will be
launched. This is only used in a bulk server launch
command.

%P If TotalView is launching one process, this is replaced
by the password that TotalView automatically gener-
ated.

If a bulk launch is being performed, TotalView replaces
this with a comma-separated list of 64-bit passwords.

%R Is replaced by the host name of the remote machine
that was specified in the File > New Program com-
mand.

%S If TotalView is launching one process, this is replaced
by the port number on the machine upon which the
debugger is running.
08 TotalView Users Guide Version 5.0

TotalView Debugger Server (tvdsvr) Command Syntax

%V
If a bulk server launch is being performed, TotalView
replaces this with a comma-separated list of port
numbers.

%t1 and %t2 Is replaced by files that TotalView creates containing
information it generates. This is only available in a
bulk launch.

These temporary files have the following structure:

(1) An optional header line containing initialization
commands required by your system.

(2) One line for each host being connected to, con-
taining host-specific information.

(3) An optional trailer line containing information
needed by your system to terminate the temporary
file.

The File > Preferences Bulk Server Page allows you to
define templates for the actions performed by tempo-
rary files. These files will use these replacement char-
acters. You can only use the %N, %t1, and %t2
replacement characters within header and trailer lines
of temporary files. The %L, %P, and %S characters can
be used in header or trailer lines or within a host line
defining the command that initiates a single-process
server launch.

The templates for temporary files can also be set us-
ing X resources.

%V Is replaced by the current TotalView verbosity setting.
Version 5.0 TotalView Users Guide 309

3

14
TotalView Debugger Server (tvdsvr) Command Syntax

%V
10 TotalView Users Guide Version 5.0

Version 5.0
Appendix A
Compilers and Platforms
This appendix describes the compilers and parallel runtime environments used
on platforms supported by TotalView. You must refer to the TotalView release
notes included in the TotalView distribution for information on the specific com-
piler and runtime environment supported by TotalView.

For information on supported operating systems, please refer to Appendix B
“Operating Systems” on page 321.

Topics in this appendix are:

g Compiling with Debugging Symbols
g Using Exception Data on Compaq Tru64 UNIX
g Linking with the dbfork Library

Compiling with Debugging Symbols

You need to compile programs with the –g option and possibly other com-
piler options so that debugging symbols are included. This section shows
the specific compiler commands to use for each compiler that TotalView
supports.

NOTE Please refer to the release notes in your TotalView distribution for the latest
information about supported versions of the compilers and parallel runtime environ-
ments listed here.
TotalView Users Guide 311

3

A
Compilers and Platforms

Compiling with Debugging Symbols
Compaq Tru64 UNIX

Table 23 lists the procedures to compile programs on Compaq Tru64 UNIX.

When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option. Also, the -WG,-cmpo=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

HP-UX

Table 24 lists the procedures to compile programs on HP-UX.

TABLE 23: Compiling with Debugging Symbols on Compaq Tru64 UNIX

Compiler Compiler Command Line

Compaq Tru64 UNIX C cc –g –c program.c

Compaq Tru64 UNIX C++ cxx –g –c program.cxx

Compaq Tru64 UNIX Fortran 77 f77 –g –c program.f

Compaq Tru64 UNIX Fortran 90 f90 –g –c program.f90

GCC EGCS C gcc –g –c program.c

GCC EGCS C++ g++ –g –c program.cxx

KAI C KCC +K0 –c program.c

KAI C++ KCC +K0 –c program.cxx

KAI Guide C (OpenMP) guidec -g +K0 program.c

KAI Guide C++ (OpenMP) guidec -g +K0 program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-cmpo=i program.f

TABLE 24: Compiling with Debugging Symbols on HP-UX

Compiler Compiler Command Line

HP ANSI C cc –g –c program.c

HP C++ aCC –g –c program.cxx

HP Fortran 90 f90 –g –c program.f90

KAI C KCC +K0 –c program.c

KAI C++ KCC +K0 –c program.cxx

KAI Guide C (OpenMP) guidec -g +K0 program.c
12 TotalView Users Guide Version 5.0

Compilers and Platforms

Compiling with Debugging Symbols
When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option. Also, the -WG,-cmpo=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

IBM AIX on RS/6000 Systems

Table 25 lists the procedures to compile programs on IBM RS/6000 sys-
tems running AIX.

If TotalView supports threading, you should not define any of the following
variables:

g AIXTHREAD_DEBUG
g AIXTHREAD_COND_DEBUG

KAI Guide C++ (OpenMP) guidec -g +K0 program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-cmpo=i program.f

TABLE 25: Compiling with Debugging Symbols on AIX

Compiler Compiler Command Line

GCC EGCS C gcc –g –c program.c

GCC EGCS C++ g++ –g –c program.cxx

IBM xlc C xlc –g –c program.c

IBM xlC C++ xlC –g –c program.cxx

IBM xlf Fortran 77 xlf –g –c program.f

IBM xlf90 Fortran 90 xlf90 –g –c program.f90

KAI C KCC +K0 –qnofullpath –c program.c

KAI C++ KCC +K0 –qnofullpath –c program.cxx

KAI Guide C (OpenMP) guidec -g +K0 program.c

KAI Guide C++ (OpenMP) guidec -g +K0 program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-cmpo=i program.f

Portland Group HPF pghpf –g –Mtv –c program.hpf

TABLE 24: Compiling with Debugging Symbols on HP-UX (cont.)

Compiler Compiler Command Line
Version 5.0 TotalView Users Guide 313

3

A
Compilers and Platforms

Compiling with Debugging Symbols
g AIXTHREAD_MUTEX_DEBUG
g AIXTHREAD_RWLOCK_DEBUG

When compiling with KCC, you must specify the –qnofullpath option; KCC
is a preprocessor that passes its output to the IBM xlc C compiler. It will
discard #line directives necessary for source-level debugging if –qfullpath
is specified. We also recommend that you use the +K0 option and not the
–g option.

When compiling with guidef77, the -WG,-cmpo=i option may not be re-
quired on all versions because -g can imply these options.

When compiling Fortran programs with the C preprocessor, pass the –d op-
tion to the compiler driver. For example: xlf –d –g –c program.F

When compiling with any of the IBM xl compilers, if your program will be
moved from its creation directory, or you do not want to set the search di-
rectory path during debugging, use the –qfullpath compiler option. For ex-
ample:

xlf –qfullpath –g –c program.f

SGI IRIX-MIPS Systems

Table 26 lists the procedures to compile programs on SGI MIPS systems
running IRIX.

TABLE 26: Compiling with Debugging Symbols on IRIX-MIPS

Compiler Compiler Command Line

GCC EGCS C gcc –g –c program.c

GCC EGCS C++ gcc –g –c program.cxx

KAI C KCC +K0 –c program.c

KAI C++ KCC +K0 –c program.cxx

KAI Guide C (OpenMP) guidec -g +K0 program.c

KAI Guide C++ (OpenMP) guidec -g +K0 program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-cmpo=i program.f

Portland Group HPF pghpf –g –64 –Mtv –c program.hpf

SGI MIPSpro 90 f90 –n32 –g –c program.f90
f90 –64 –g –c program.f90
14 TotalView Users Guide Version 5.0

Compilers and Platforms

Compiling with Debugging Symbols
Compiling with –n32 or –64 is supported. TotalView does not support com-
piling with –32, which is the default for some compilers. You must specify
either –n32 or –64.

When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option. Also, the -WG,-cmpo=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

You must compile your programs with the pghpf –64 compiler option; on
SGI IRIX, TotalView can debug 64-bit executables only.

SunOS 5 on SPARC

Table 27 lists the procedures to compile programs on SunOS 5 SPARC.

SGI MIPSpro C cc –n32 –g –c program.c
cc –64 –g –c program.c

SGI MIPSpro C++ CC –n32 –g –c program.cxx
CC –64 –g –c program.cxx

SGI MIPSpro77 f77 –n32 –g –c program.f
f77 –64 –g –c program.f

TABLE 27: Compiling with Debugging Symbols on SunOS 5

Compiler Compiler Command Line

Apogee C apcc –g –c program.c

Apogee C++ apcc –g –c program.cxx

GCC EGCS C gcc –g –c program.c

GCC EGCS C++ g++ –g –c program.cxx

KAI C KCC +K0 –c program.c

KAI C++ KCC +K0 –c program.cxx

KAI Guide C (OpenMP) guidec -g +K0 program.c

KAI Guide C++ (OpenMP) guidec -g +K0 program.cxx

KAI Guide F77 (OpenMP) guidef77 -g -WG,-cmpo=i program.f

Portland Group HPF pghpf –g –Mtv –c program.hpf

TABLE 26: Compiling with Debugging Symbols on IRIX-MIPS (cont.)

Compiler Compiler Command Line
Version 5.0 TotalView Users Guide 315

3

A
Compilers and Platforms

Using Exception Data on Compaq Tru64 UNIX
When compiling with KCC for debugging, we recommend that you use the
+K0 option and not the –g option. Also, the -WG,-cmpo=i option to the
guidef77 command may not be required on all versions because -g can
imply these options.

Using Exception Data on Compaq Tru64 UNIX
If you receive the following error message when you load an executable
into TotalView, you may need to compile your program so that exception
data is included:

Cannot find exception information. Stack backtraces may not be
correct.

To provide a complete stack backtrace in all situations, TotalView needs
the exception data to be included in the compiled executable. To compile
with exception data, you need to use the following options:

cc –Wl,–u,_fpdata_size program.c

where:

–Wl Passes the arguments that follow to another compila-
tion phase (–W), which in this case is the linker (l).
Each argument is separated by a comma (,).

–u Causes the linker to mark the next argument
(_fpdata_size) as undefined.

_fpdata_size Marks the _fpdata_size variable as undefined, which
forces the exception data into the executable.

program.c Is the name of your program.

SunPro/WorkShop C cc –g –c program.c

SunPro/WorkShop C++ CC –g –c program.cxx

SunPro/WorkShop Fortran 77 f77 –g –c program.f

WorkShop Fortran 90 f90 –g –c program.f90

TABLE 27: Compiling with Debugging Symbols on SunOS 5 (cont.)

Compiler Compiler Command Line
16 TotalView Users Guide Version 5.0

Compilers and Platforms

Linking with the dbfork Library
Compiling with exception data increases the size of your executable
slightly. If you choose not to compile with exception data, TotalView can
provide correct stack backtraces in most situations, but not in all situa-
tions.

Linking with the dbfork Library
If your program uses the fork() and execve() system calls, and you want to
debug the child processes, you need to link programs with the dbfork li-
brary.

Compaq Tru64 UNIX

Add one of the following arguments to the command that you use to link
your programs:

g /opt/totalview/lib/libdbfork.a
g –L/opt/totalview/lib –ldbfork

For example:

cc –o program program.c –L/opt/totalview/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

HP-UX

Add either the -ldbfork or -ldbfork_64 argument to the command that you
use to link your programs. If you are compiling 32-bit code, use one of the
following arguments:

g /opt/totalview/lib/libdbfork.a
g –L/opt/totalview/lib –ldbfork

For example:

cc –n32 –o program program.c –L/opt/totalview/lib –ldbfork
Version 5.0 TotalView Users Guide 317

3

A
Compilers and Platforms

Linking with the dbfork Library
If you are compiling 64-bit code, use the following arguments:

g /opt/totalview/lib/libdbfork_64.a
g –L/opt/totalview/lib –ldbfork_64

For example:

cc –64 –o program program.c –L/opt/totalview/lib –ldbfork_64

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L command-line option. For example:

setenv LD_LIBRARY_PATH /opt/totalview/lib

IBM AIX on RS/6000 Systems

Add either the -dbfork or -ldbfork_64 argument to the command that you
use to link your programs. If you are compiling 32-bit code, use the follow-
ing arguments:

g /usr/totalview/lib/libdbfork.a –bkeepfile:/usr/totalview/lib/libdbfork.a
g –L/usr/totalview/lib –ldbfork –bkeepfile:/usr/totalview/lib/libdbfork.a

For example:

cc –o program program.c \
–L/usr/totalview/lib –ldbfork \
–bkeepfile:/usr/totalview/lib/libdbfork.a

If you are compiling 64-bit code, use the following arguments:

g /usr/totalview/lib/libdbfork_64.a \
–bkeepfile:/usr/totalview/lib/libdbfork.a

g –L/usr/totalview/lib –ldbfork_64 \
–bkeepfile:/usr/totalview/lib/libdbfork.a

For example:

cc –o program program.c \
–L/usr/totalview/lib –ldbfork \
–bkeepfile:/usr/totalview/lib/libdbfork.a
18 TotalView Users Guide Version 5.0

Compilers and Platforms

Linking with the dbfork Library
When you use gcc or g++, use the –Wl,–bkeepfile option instead of using
the –bkeepfile option, which will pass the same option to the binder. For
example:

gcc –o program program.c –L/usr/totalview/lib –ldbfork \
–Wl,–bkeepfile:/usr/totalview/lib/libdbfork.a

Linking C++ Programs with dbfork
The binder option –bkeepfile currently cannot be used with the IBM xlC
C++ compiler. The compiler passes all binder options to an additional
pass called munch, which cannot handle the –bkeepfile option.

To work around this problem, we have provided the C++ header file
libdbfork.h. You must include this file somewhere in your C++ program, in
order to force the components of the dbfork library to be kept in your exe-
cutable. The file libdbfork.h is included only with the RS/6000 version of
TotalView. This means that if you are creating a program that will run on
more than one platform, you should place the include within an #ifdef
statement. For example:

#ifdef _AIX
#include “/usr/totalview/lib/libdbfork.h”
#endif
int main (int argc, char *argv[])
{
}

In this case, you would not use the -bkeepfile option and would instead
link your program using one of the following options:

g /usr/totalview/lib/libdbfork.a
g –L/usr/totalview/lib –ldbfork

SGI IRIX6-MIPS

Add one of the following arguments to the command that you use to link
your programs.

If you are compiling your code with –n32, use the following arguments:

g /opt/totalview/lib/libdbfork_n32.a
g –L/opt/totalview/lib –ldbfork_n32
Version 5.0 TotalView Users Guide 319

3

A
Compilers and Platforms

Linking with the dbfork Library
For example:

cc –n32 –o program program.c –L/opt/totalview/lib –ldbfork_n32

If you are compiling your code with –64, use the following arguments:

g /opt/totalview/lib/libdbfork.a_n64.a
g –L/opt/totalview/lib –ldbfork_n64

For example:

cc –64 –o program program.c –L/opt/totalview/lib –ldbfork_n64

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

SunOS 5 SPARC

Add one of the following arguments to the command that you use to link
your programs:

g /opt/totalview/lib/libdbfork.a
g –L/opt/totalview/lib –ldbfork

For example:

cc –o program program.c –L/opt/totalview/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib
20 TotalView Users Guide Version 5.0

Version 5.0
Appendix B
Operating Systems
This appendix describes the operating system features that can be used with
TotalView. This appendix includes the following topics:

g Supported Operating Systems
g Mounting the /proc File System (Compaq Tru64 UNIX, IRIX, and SunOS 5

only)
g Swap Space
g Shared Libraries
g Debugging Dynamically Loaded Libraries
g Remapping Keys (Sun Keyboards only)
g Expression System

Supported Operating Systems

Here is an overview of operating systems and some of the environments
supported by TotalView at the time when this book was printed. You should
know that this list changes frequently. For a complete list of hardware and
software requirements, see the TOTALVIEW PLATFORMS document in your
software distribution.

g Compaq Alpha workstations running Compaq Tru64 UNIX versions
V4.0D, V4.0E, V4.0F, V5.0, V5.0A, and V5.1. All versions require patches.
See “Compaq UNIX Patch Procedures” in the TOTALVIEW PLATFORMS doc-
ument for instructions.

g HP PA-RISC 1.1 or 2.0 systems running HP-UX Version 11.00 and 11.10.

g IBM RS/6000 and SP systems running AIX versions 4.2.1, 4.3, 4.3.1,
4.3.2, and 4.3.3.
TotalView Users Guide 321

3

B
Operating Systems

Mounting the /proc File System
g Linux Red Hat 6.0, 6.1, 6.2, 7.0, and 7.1.

g SGI IRIX 6.2, 6.3, 6.4, or 6.5 on any MIPS R4000, R4400, R4600, R5000,
R8000, R10000, and R12000 processor-based systems.

g Sun Sparc SunOS 5 (Solaris 2.x) systems running SunOS versions 5.5,
5.5.1, 5.6, 5.7, and 5.8. (Solaris 2.5, 2.5.1, or 2.6, 7, or 8). TotalView also
supports QSW CS-2 based on Sparc Solaris 2.5.1 or 2.6.

NOTE TotalView on QSW CS-2 is nearly identical to TotalView on Sun Solaris 2.x sys-
tems.

Mounting the /proc File System

To debug programs on Compaq Tru64 UNIX, SunOS 5, and IRIX with
TotalView, you need to mount the /proc file system.

If you receive one of the following errors from TotalView, the /proc file sys-
tem might not be mounted:

g job_t::launch, creating process: process not found

g Error launching process while trying to read dynamic symbols

g Creating Process... Process not found
Clearing Thrown Flag
Operation Attempted on an unbound d_process object

To determine whether the /proc file system is mounted, enter the appropri-
ate command from the following table.

If you receive one of these messages from the mount command, the /proc
file system is mounted.

Table 28: Commands for Determining Whether /proc Is Mounted

Operating System Command
Compaq Tru64 UNIX % /sbin/mount –t procfs

/proc on /proc type procfs (rw)
SunOS 5 % /sbin/mount | grep /proc

/proc on /proc read/write/setuid on ...
IRIX % /sbin/mount | grep /proc

/proc on /proc type proc (rw)
22 TotalView Users Guide Version 5.0

Operating Systems

Swap Space
Compaq Tru64 UNIX and SunOS 5

To make sure that the /proc file system is mounted each time your system
boots, add the appropriate line from the following table to the appropriate
file.

Then, to mount the /proc file system, enter the following command:

/sbin/mount /proc

SGI IRIX

To make sure that the /proc file system is mounted each time your system
boots, make sure that /etc/rc2 issues the /etc/mntproc command. Then, to
mount the /proc file system, enter the following command:

/etc/mntproc

Swap Space

Debugging large programs can exhaust the swap space on your machine. If
you run out of swap space, TotalView exits with a fatal error, such as:

g Fatal Error: Out of space trying to allocate

This error indicates that TotalView failed to allocate dynamic memory. It
can occur anytime during a TotalView session. It can also indicate that
the data size limit in the C shell is too small. You can use the C shell’s
limit command to increase the data size limit. For example:

limit datasize unlimited
g job_t::launch, creating process: Operation failed

This error indicates that the fork() or execve() system call failed while
TotalView was creating a process to debug. It can happen when
TotalView tries to create a process.

Table 29: Commands for Automatically Mounting the /proc File System

Operating
System Name of File Line to add
Compaq
Tru64 UNIX

/etc/fstab /proc /proc procfs rw 0 0

SunOS 5 /etc/vfstab /proc - /proc proc - no -
Version 5.0 TotalView Users Guide 323

3

B
Operating Systems

Swap Space
Compaq Tru64 UNIX

To find out how much swap space has been allocated and is currently be-
ing used, use the swapon command on Compaq Tru64 UNIX:

% /sbin/swapon –s
Total swap allocation:
Allocated space: 85170 pages (665MB)
Reserved space: 14216 pages (16%)
Available space: 70954 pages (83%)

Swap partition /dev/rz3b:
Allocated space: 16384 pages (128MB)
In-use space: 2610 pages (15%)
Free space: 13774 pages (84%)

Swap partition /dev/rz3h:
Allocated space: 52402 pages (409MB)
In-use space: 2575 pages (4%)
Free space: 49827 pages (95%)

Swap partition /dev/rz1b:
Allocated space: 16384 pages (128MB)
In-use space: 2592 pages (15%)
Free space: 13792 pages (84%)

In this example, 665 MB of swap space is allocated, and 106 MB of it is cur-
rently in use.

To find out how much swap space is in use while you are running TotalView:

/bin/ps –o LFMT

For example, in this case the value in the VSZ column is 4.45 MB:

UID PID PPID CP PRI NI VSZ RSS ...
12270 5340 5293 0 41 0 4.45M 1.27 ...

To add swap space, use the /sbin/swapon(8) command. You must be root
to use this command. For more information, refer to the online manual
page for this command.
24 TotalView Users Guide Version 5.0

Operating Systems

Swap Space
HP HP-UX

The swapinfo command on an HP-UX system lets you find out how much
swap space is allocated and is being used. For example:

/usr/sbin/swapinfo
Kb Kb Kb PCT START/ Kb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 1048576 0 1048576 0% 0 - 1 /dev/vg00/lvol2
reserve - 389240 -389240
memory 1178960 966564 212396 82%

To find out how much swap space is being used while TotalView is running,
enter:

/usr/bin/ps -lf

Here is an example of what you might see:

 F S UID PID PPID C PRI NI ADDR SZ ...
21 T rtf 4414 13709 0 154 20 ce8d800 2764 ...

The SZ column shows the pages occupied by a program.

To add swap space, use the/usr/sbin/swapon(1M) command or the SAM
(System Administration Manager) utility. If you use SAM, invoke the Swap
command within the Disks and File Systems menu.

Maximum Data Size
To see the current data size limit in the C shell, enter:

limit datasize

The following command displays the current hard limit:

limit -h datasize

If the current limit is lower than the hard limit, you can easily raise the cur-
rent limit. To change the current limit, enter:

limit datasize new_data_size

If the hard limit is too low, you must reconfigure and rebuild the kernel, and
then reboot. This is most easily done using SAM.
Version 5.0 TotalView Users Guide 325

3

B
Operating Systems

Swap Space
To change maxdsiz, use the following path through the SAM menus:

Kernel Configuration > Configurable Parameters > maxdsiz >
Actions > Modify Configurable Parameter >
Specify New Formula/Value > Formula/Value

You can now enter the new maximum data segment size.

You may also need to change the value for maxdsiz_64.

Here is the command that lets you rebuild the kernel with these changed
values:

Configurable Parameter > Actions > Process New Kernel

Answer yes to process the kernel modifications, yes to install the new ker-
nel, and yes again to reboot the machine with the new kernel.

When the machine reboots, the value you set for maxdsiz should be the
new hard limit.

IBM AIX

To find out how much swap space has been allocated and is currently be-
ing used, use the pstat command:

% /usr/sbin/pstat –s

PAGE SPACE:

USED PAGES FREE PAGES
7555 115325

In this example, 122880 (7555 + 115325) pages of swap space was allo-
cated; 7555 pages are currently in use, and 115325 pages are free.

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:

totalview executable

2 Press Ctrl-Z to suspend TotalView.

3 Use the following command to see how much swap space TotalView
is using:

ps u
26 TotalView Users Guide Version 5.0

Operating Systems

Swap Space
For example, in this case the value in the SZ column is 5476 KB:

USER PID %CPU %MEM SZ RSS TTY ...
smith 15080 0.0 6.0 5476 5476 pts/1 ...

To add swap space, use the AIX system management tool, smit. Use the
following path through the smit menus:

System Storage Management Logical Volume Manager
Paging Space

Linux

To find out how much swap space has been allocated and is currently be-
ing used, use either the swapon or top commands on Linux:

% /sbin/swapon -s
Filename Type Size Used Priority
/dev/hda7 partition 128484 28 -1

% top
jcownie@pc2: top
(null) 1:29pm up 4:28, 1 user, load average: 0.00, 0.00, 0.00
52 processes: 50 sleeping, 2 running, 0 zombie, 0 stopped
CPU states: 1.1% user, 0.4% system, 0.0% nice, 98.4% idle
Mem: 127904K a, 116512K used, 11392K free, 36020K shrd, \

3632K buff
Swap: 128484K av, 28K used, 128456K free 79804K
cached
... remainder of "top" listing removed ...

You can use the mkswap(8) command to create swap space. The
swapon(8) command tells Linux that it should use this space.

SGI IRIX

To find out how much swap space has been allocated and is currently be-
ing used, use the swap command:

% /sbin/swap –s
total: 1.55m allocated + 124.47m add'l reserved = 126.02m bytes
used, 250.94m bytes available
Version 5.0 TotalView Users Guide 327

3

B
Operating Systems

Swap Space
To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:

totalview executable

2 Press Ctrl-Z to suspend TotalView.

3 Use the following command to see how much swap space TotalView
is using:

/bin/ps –l

For example, in this case the value in the SZ column is 584 pages.
F S UID PID PPID C PRI NI P ...
b0 T 14694 26236 26271 5 62 20 * ...

Use the following command to determine the number of bytes in a page:
sysconf PAGESIZE

To add swap space, use the mkfile(1M) and swap(1M) commands. You
must be root to use these commands. For more information, refer to the
on-line manual pages for these commands.

SunOS 5

To find out how much swap space has been allocated and is currently be-
ing used, use the swap command:

% /usr/sbin/swap –s
total: 16192K bytes allocated + 7140K bytes \

reserved = 23332K used, 63456K available

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:

totalview executable

2 Press Ctrl-Z to suspend TotalView.

3 Use the following command to see how much swap space TotalView
is using:

/bin/ps –l

To add swap space, use the mkfile(1M) and swap(1M) commands. You
must be root to use these commands. For more information, refer to the
on-line manual pages for these commands.
28 TotalView Users Guide Version 5.0

Operating Systems

Shared Libraries
Shared Libraries

TotalView supports dynamically linked executables, that is, executables
that are linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView
loads an additional set of symbols for the shared libraries, as indicated in
the shell from which you started TotalView. To accomplish this, TotalView:

1 Runs a sample process and discards it.

2 Reads information from the process.

3 Reads the symbol table for each library.

When you create a process without starting it, and the process does not in-
clude shared libraries, the PC points to the entry point of the process, usu-
ally the start routine. If the process does include shared libraries, however,
TotalView takes the following actions:

g Runs the dynamic loader (SunOS 5: ld.so, Compaq Tru64 UNIX:
/sbin/loader, Linux: /lib/ld-linux.so.?, IRIX: rld).

g Sets the PC to point to the location after the invocation of the dynamic
loader but before the invocation of C++ static constructors or the
main routine.

NOTE ON HP-UX, TotalView cannot stop the loading of shared libraries until
after static constructors on shared library initialization routines have been
run.

When you attach to a process that uses shared libraries, TotalView takes
the following actions:

g If you attached to the process after the dynamic loader ran, then
TotalView loads the dynamic symbols for the shared library.

g If you attached to the process before it runs the dynamic loader,
TotalView allows the process to run the dynamic loader to completion.
Then, TotalView loads the dynamic symbols for the shared library.

If desired, you can suppress the use of shared libraries by starting
TotalView with the –no_dynamic option. Refer to Chapter 13 “TotalView
Command Syntax” on page 289 for details on this TotalView startup option.
Version 5.0 TotalView Users Guide 329

3

B
Operating Systems

Shared Libraries
If you believe that a shared library has changed since you started a
TotalView session, you can use the Group > Rescan Library command to
reload library symbol tables. Be aware that only some systems such as AIX
permit you to reload library information.

Changing Linkage Table Entries and LD_BIND_NOW

If you are executing a dynamically linked program, calls from the executable
into a shared library are made using the Procedure Linkage Table (PLT). Each
function in the dynamic library that is called by the main program has an en-
try in this table. Normally, the dynamic linker fills the PLT entries with code
that calls the dynamic linker. This means that the first time that your code
calls a function in a dynamic library, the runtime environment calls the dy-
namic linker. The linker will then modify the entry so that next time this func-
tion is called, it will not be involved.

This is not the behavior you want or expect when debugging a program be-
cause TotalView will do one of the following:

g Place you within the dynamic linker (which you don't want to see).

g Step over the function.

And, because the entry is altered, everything appears to work fine the next
time you step into this function.

On most operating systems (except HP), you can correct this problem by
setting the LD_BIND_NOW environment variable. For example:

setenv LD_BIND_NOW 1

This tells the dynamic linker that it should alter the PLT when the program
starts executing rather than doing it when the program calls the function.

HP-UX does not have this (or an equivalent) variable. On HP systems, you
can avoid this problem by linking the executable being debugged with the -B
immediate option or by invoking chatr with the -B immediate option. (See
the chatr documentation for complete information on how to use this com-
mand.)

You will also have to enter pxdb -s on.
30 TotalView Users Guide Version 5.0

Operating Systems

Debugging Dynamically Loaded Libraries
Using Shared Libraries on HP-UX

The dynamic library loader on HP-UX loads shared libraries into shared
memory. Writing breakpoints into code sections loaded in shared memory
can cause programs not under TotalView’s control to fail when they exe-
cute an unexpected breakpoint.

If you need to single-step or set breakpoints in shared libraries, you must
set your application to load those libraries in private memory. This is done
using HP’s pxdb command.

pxdb -s on appname (load shared libraries into private memory)
pxdb -s off appname (load shared libraries into shared memory)

For 64-bit platforms, use pxdb64 instead of pxdb. If the version of pxdb64
supplied with HP's compilers does not work correctly, you may need to in-
stall an HP-supplied patch. You will find additional information on the
TOTALVIEW RELEASE NOTES.

Debugging Dynamically Loaded Libraries

TotalView automatically reads the symbols of shared libraries that are dy-
namically loaded into your program at runtime. These libraries are ones
that are loaded using dlopen (or, on IBM AIX, load and loadbind).

TotalView automatically detects these calls, and then loads the symbol ta-
ble from the newly loaded libraries and plants any enabled saved break-
points for these libraries. TotalView then decides whether to ask you about
stopping the process to plant breakpoints. You will set these characteris-
tics by using the Dynamic Libraries Page within the File > Preferences dia-
log box. (See “File > Preferences Dialog Box: Dynamic Libraries Page” on page
332.)

TotalView decides according to the following rules:

1 If the “Load symbols from dynamic libraries preference is set to false,
TotalView does not ask you about stopping.
Version 5.0 TotalView Users Guide 331

3

B
Operating Systems

Debugging Dynamically Loaded Libraries
2 If one or more of the strings in the “When the file suffix matches pref-
erence list is a suffix of the full library name (including path),
TotalView asks you about stopping.

3 If one or more of the strings in the “When the file path prefix does
not match list is a prefix of the full library name (including path),
TotalView does not ask you about stopping.

4 If the newly loaded libraries have any saved breakpoints, TotalView
does not ask you about stopping.

5 If none of the rules above apply, TotalView asks you about stopping.

If TotalView does not ask you about stopping the process, the process is
continued.

If TotalView decides to ask you about stopping, it displays a dialog box,
asking if it should stop the process so you can set breakpoints. To stop the
process, answer yes.

To allow the process to continue executing, answer no. Stopping the pro-
cess allows you to insert breakpoints in the newly loaded shared library.

Figure 136: File > Preferences Dialog Box: Dynamic Libraries Page
32 TotalView Users Guide Version 5.0

Operating Systems

Debugging Dynamically Loaded Libraries
You can tell TotalView if it should ask by doing either or both of the follow-
ing:

g You can set the –ask_on_dlopen command-line option to true, or you
can set the –no_ask_on_dlopen option to false.

g Set the Load Symbols from dynamic libraries preference.

The following table lists paths where you are not asked if it is alright to load
dynamic link libraries:

Figure 137: Stop Process Question

Table 30: Default “Don’t Ask” on Load List

Platform Value
Compaq Tru64 UNIX
Alpha

/usr/shlib/ /usr/ccs/lib/
/usr/lib/cmplrs/cc/ /usr/lib/
/usr/local/lib/ /var/shlib/

HP-UX /usr/lib/ /usr/lib/pa20_64
/opt/langtools/lib/ /opt/langtools/lib/pa20_64/

IBM AIX /lib/ /usr/lib/
/usr/lpp/ /usr/ccs/lib/
/usr/dt/lib/ /tmp/

SGI IRIX /lib/ /usr/lib/
/usr/local/lib/ /lib32/
/usr/lib32/ /usr/local/lib32/
/lib64/ /usr/lib64/
/usr/local/lib64

SUN Solaris 2.x /lib/ /usr/lib/
/usr/ccs/lib/

Linux x86 /lib /usr/lib
Linux Alpha /lib /usr/lib
Version 5.0 TotalView Users Guide 333

3

B
Operating Systems

Remapping Keys
The values you enter om the TotalView preference should be space-sepa-
rated lists of the prefixes and suffixes to be used.

After starting TotalView, you can change these lists by using the When the
file suffix matches and And the file path prefix does not match prefer-
ences.

Known Limitations

Dynamic library support has the following know limitations:

g TotalView does not deal correctly with parallel programs that call dlopen
on different libraries in different processes. TotalView requires that the
processes have a uniform address space, including all shared libraries.

g TotalView does not yet fully support unloading libraries (using dlclose)
and then reloading them at a different address using dlopen.

Remapping Keys

On the SunOS 5 keyboard, you may need to remap the page-up and page-
down keys to the prior and next keysym so that you can scroll TotalView
windows with the page-up and page-down keys. To do so, add the follow-
ing lines to your X Window System start-up file:

Remap F29/F35 to PgUp/PgDn
xmodmap -e 'keysym F29 = Prior'
xmodmap -e 'keysym F35 = Next'

Expression System

Depending on the target platform, TotalView supports:

g An interpreted expression system only

g Both an interpreted and a compiled expression system

Unless stated otherwise below, TotalView supports interpreted expressions
only.
34 TotalView Users Guide Version 5.0

Operating Systems

Expression System
Compaq Alpha Tru64 UNIX

On Compaq Tru64 UNIX, TotalView supports compiled and interpreted ex-
pressions. TotalView also supports assembler in expressions.

IBM AIX

On IBM AIX, TotalView supports compiled and interpreted expressions.
TotalView also supports assembler in expressions.

Some program functions called from the TotalView expression system on
the Power architecture cannot have floating-point arguments that are
passed by value. However, in functions with a variable number of argu-
ments, floating-point arguments can be in the varying part of the argument
list. For example, you can include floating-point arguments with calls to
printf:

double d = 3.14159;
printf("d = %f\n", d);

SGI IRIX

On IRIX, TotalView supports compiled and interpreted expressions.
TotalView also supports assembler in expressions.

TotalView includes the SGI IRIX expression compiler. This feature does not
use any MIPS-IV specific instructions. It does use MIPS-III instructions
freely. It fully supports –n32 and –64 executables.

Due to limitations in dynamically allocating patch space, compiled expres-
sions are disabled by default on SGI IRIX. To enable compiled expressions
in an invocation of TotalView, use the X resource
totalview*compileExpressions on page 277 to set the option to true, or
pass the X resource as the –compileExpressions=true command-line op-
tion. This option also tells TotalView to find or allocate patch space in your
program for code fragments generated by the expression compiler.

If you enable compiled patches on SGI IRIX with a multiprocess program,
you must use static patches. For example, if you link a static patch space
into an IRIX MPI program and run the program under TotalView’s control,
Version 5.0 TotalView Users Guide 335

3

B
Operating Systems

Expression System
TotalView should let you debug it. If you attach to a previously started MPI
job, however, even static patches will not let the program run properly. If
TotalView still fails to work properly with the static patch space, then you
probably cannot use compiled patches with your program.

For general instructions on using patch space allocation controls with
compiled expressions, see “Allocating Patch Space for Compiled Expressions” on
page 221.
36 TotalView Users Guide Version 5.0

Version 5.0
Appendix C
Architectures
This appendix describes the architectures TotalView supports, including:

g Compaq Alpha
g HP PA-RISC
g IBM Power
g Intel-x86 (Intel 80386, 80486 and Pentium processors)
g SGI MIPS
g Sun SPARC

It includes the following topics for each architecture:

g General registers
g Floating-point registers
g Floating-point format

Compaq Alpha

This section contains the following information:

g Alpha General Registers

g Alpha Floating-Point Registers

g Alpha FPCR Register

NOTE The Alpha processor supports the IEEE floating-point format.
TotalView Users Guide 337

3

C
Architectures

Compaq Alpha
Alpha General Registers

TotalView displays the Alpha general registers in the Stack Frame Pane of
the Process Window. The next table describes how TotalView treats each
general register, and the actions you can take with each register.

Alpha Floating-Point Registers

TotalView displays the Alpha floating-point registers in the Stack Frame
Pane of the Process Window. Here is a table that describes how TotalView

Table 31: Alpha General Purpose Integer Registers

Register Description Data Type Edit Dive
Specify in
Expression

V0 Function value register <long> yes yes $v0

T0 – T7 Conventional scratch
registers

<long> yes yes $t0 – $t7

S0 – S5 Conventional saved
registers

<long> yes yes $s0 – $s5

S6 Stack frame base register <long> yes yes $s6

A0 – A5 Argument registers <long> yes yes $a0 – $a5

T8 – T11 Conventional scratch
registers

<long> yes yes $t8 – $t11

RA Return Address register <long> yes yes $ra

T12 Procedure value register <long> yes yes $t12

AT Volatile scratch register <long> yes yes $at

GP Global pointer register <long> yes yes $gp

SP Stack pointer <long> yes yes $sp

ZERO ReadAsZero/Sink register <long> no yes $zero

PC Program counter <code>[] no yes $pc

FP Frame pointer. The Frame
Pointer is a software
register that TotalView
maintains; it is not an
actual hardware register.
TotalView computes the
value of FP as part of the
stack backtrace.

<long> no yes $fp
38 TotalView Users Guide Version 5.0

Architectures

Compaq Alpha
treats each floating-point register, and the actions you can take with each
register.

Alpha FPCR Register

For your convenience, TotalView interprets the bit settings of the Alpha
FPCR register. You can edit the value of the FPCR and set it to any of the bit
settings outlined in the following table.

Table 32: Alpha Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F1 Floating-point registers (f
registers), used singly

<double> yes yes $f0 – $f1

F2 – F9 Conventional saved
registers

<double> yes yes $f2 – $f9

F10 – F15 Conventional scratch
registers

<double> yes yes $f10 – $f15

F16 – F21 Argument registers <double> yes yes $f16 – $f21

F22 – F30 Conventional scratch
registers

<double> yes yes $f22 – $f30

F31 ReadAsZero/Sink register <double> yes yes $f31

FPCR Floating-point control
register

<long> yes no $fpcr

Table 33: Alpha FPCR Register Bit Settings

Value Bit Setting Meaning

SUM 0x8000000000000000 Summary bit

DYN=CHOP 0x0000000000000000 Rounding mode — Chopped
rounding mode

DYN=MINF 0x0400000000000000 Rounding mode — Negative
infinity

DYN=NORM 0x0800000000000000 Rounding mode — Normal
rounding

DYN=PINF 0x0c00000000000000 Rounding mode — Positive
infinity
Version 5.0 TotalView Users Guide 339

3

C
Architectures

HP PA-RISC
HP PA-RISC

This section contains the following information:

g PA-RISC General Registers

g PA-RISC Process Status Word

g PA-RISC Floating-Point Registers

g PA-RISC Floating-Point Format

PA-RISC General Registers

TotalView displays the PA-RISC general registers in the Stack Frame Pane of
the Process Window. The following table describes how TotalView treats
each general register and the actions you take with them.

IOV 0x0200000000000000 Integer overflow

INE 0x0100000000000000 Inexact result

UNF 0x0080000000000000 Underflow

OVF 0x0040000000000000 Overflow

DZE 0x0020000000000000 Division by zero

INV 0x0010000000000000 Invalid operation

Table 33: Alpha FPCR Register Bit Settings (cont.)

Value Bit Setting Meaning

Table 34: PA-RISC General Registers

Register Description Data Type Edit Dive
Specify in
Expression

r0 Always contains zero <long> no no $r0

r1-r31 General registers <long> yes yes $r1-$r31

pc Current instruction pointer <long> yes yes $pc

nxtpc Next instruction pointer <long> yes yes $nxtpc

pcs Current instruction space <long> no no $pcs

nxtpcs Next instruction space <long> no no $nxtpcs

psw Processor status word <long> yes no $psw
40 TotalView Users Guide Version 5.0

Architectures

HP PA-RISC
PA-RISC Process Status Word

For your convenience, TotalView interprets the bit settings of the PA-RISC
Processor Status Word. You can edit the value of this word and set some of
the bits listed in the following table.

sar Shift amount register <long> yes no $sar

sr0-sr7 Space registers <long> no no $sr0-$sr7

recov Recovery counter <long> no no $recov

pid1-pid8 Protection IDs <long> no no $pid1-$pid8

ccr Coprocessor configuration <long> no no $ccr

scr SFU configuration register <long> no no $scr

eiem External interrupt enable
mask

<long> no no $eiem

iir Interrupt instruction <long> no no $iir

isr Interrupt space <long> no no $isr

ior Interrupt offset <long> no no $ior

cr24-cr26 Temporary registers <long> no no $cr24-$cr26

tp Thread pointer <long> yes yes $tp

Table 35: PA-RISC Processor Status Word

Value Bit Setting Meaning
W 0x0000000008000000 64-bit addressing enable

E 0x0000000004000000 Little-endian enable

S 0x0000000002000000 Secure interval timer

T 0x0000000001000000 Taken branch flag

H 0x0000000000800000 Higher-privilege transfer trap enable

L 0x0000000000400000 Lower-privilege transfer trap enable

N 0x0000000000200000 Nullify current instruction

X 0x0000000000100000 Data memory break disable

B 0x0000000000080000 Taken branch flag

C 0x0000000000040000 Code address translation enable

V 0x0000000000020000 Divide step correction

Table 34: PA-RISC General Registers

Register Description Data Type Edit Dive
Specify in
Expression
Version 5.0 TotalView Users Guide 341

3

C
Architectures

HP PA-RISC
PA-RISC Floating-Point Registers

The PA-RISC has 32 floating-point registers. The first four are used for sta-
tus and exception registers. The rest can be addressed as 64-bit doubles,
as two 32-bit floats in the right and left sides of the register, or even-odd
pairs of registers as 128-bit extended floats.

M 0x0000000000010000 High-priority machine check mask

O 0x0000000000000080 Ordered references

F 0x0000000000000020 Performance monitor interrupt unmask

R 0x0000000000000010 Recovery counter enable

Q 0x0000000000000008 Interrupt state collection enable

P 0x0000000000000004 Protection identifier validation enable

D 0x0000000000000002 Data address translation enable

I 0x0000000000000001 External interrupt unmask

C/B 0x000000FF0000FF00 Carry/borrow bits

Table 36: PA-RISC Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

status Status register <int> no no $status

er1-er7 Exception registers <int> no no $er1-$er7

fr4-fr31 Double floating-point
registers

<double> yes yes $fr4-$fr31

fr4l-fr31l Left half floating-point
registers

<float> yes yes $fr4l-$fr31l

fr4r-fr31r Right half floating-point
registers

<float> yes yes $fr4r-$fr31r

fr4/fr5-
fr30/fr31

Extended floating-point
register pairs

<extended> yes yes $fr4_fr5-
$fr30_fr31

Table 35: PA-RISC Processor Status Word (cont.)

Value Bit Setting Meaning
42 TotalView Users Guide Version 5.0

Architectures

HP PA-RISC
The floating-point status word controls the arithmetic rounding mode, en-
ables user-level traps, enables floating-point exceptions, and indicates the
results of comparisons.

PA-RISC Floating-Point Format

The PA-RISC processor supports the IEEE floating-point format.

Table 37: Floating-Point Status Word Use

Type Value Meaning
Rounding Mode 0 Round to nearest

1 Round toward zero

2 Round toward +infinity

3 Round toward -infinity

Exception Enable and
Exception Flag Bits

V Invalid operation

Z Division by zero

O Overflow

U Underflow

I Inexact result

Comparison Fields C Compare bit; contains the result of the most
recent queued compare instruction.

CQ Compare queue; contains the result of the
second-most recent queued compare through
the twelfth-most recent queued compare.
Each queued compare instruction shifts the
CQ field right one bit and copies the C bit into
the left-most position.

This field occupies the same bits as the CA
field and is undefined after a targeted
compare.

CA Compare array; an array of seven compare
bits, each of which contains the result of the
most recent compare instruction targeting
that bit.

This field occupies the same bits as the CQ
field and is undefined after a queued compare.

Other Flags: T Delayed trap

D Denormalized as zero
Version 5.0 TotalView Users Guide 343

3

C
Architectures

IBM Power
IBM Power

This second contains the following information:

g Power General Registers

g Power MSR Register

g Power Floating-Point Registers

g Power FPSCR Register

g Using the Power FPSCR Register

NOTE The Power architecture supports the IEEE floating-point format.

Power General Registers

TotalView displays Power general registers in the Stack Frame Pane of the
Process Window. The following table describes how TotalView treats each
general register, and the actions you can take with each register.

Table 38: Power General Purpose Integer Registers

Register Description Data Type Edit Dive
Specify in
Expression

R0 General register 0 <int> yes yes $r0

SP Stack pointer <int> yes yes $sp

RTOC TOC pointer <int> yes yes $rtoc

R3 – R31 General registers 3 – 31 <int> yes yes $r3 – $r31

INUM <int> yes no $inum

PC Program counter <code>[] no yes $pc

SRR1 Machine status
save/restore register

<int> yes no $srr1

LR Link register <int> yes no $lr

CTR Counter register <int> yes no $ctr

CR Condition register <int> yes no $cr

XER Integer exception register <int> yes no $xer

DAR Data address register <int> yes no $dar

MQ MQ register <int> yes no $mq

MSR Machine state register <int> yes no $msr

SEG0 – SEG9 Segment registers 0 – 9 <int> yes no $seg0 –
$seg9
44 TotalView Users Guide Version 5.0

Architectures

IBM Power
Power MSR Register

For your convenience, TotalView interprets the bit settings of the Power
MSR register. You can edit the value of the MSR and set it to any of the bit
settings outlined in the following table.

SG10 – SG15 Segment registers 10 –15 <int> yes no $sg10 –
$sg15

SCNT SS_COUNT <int> yes no $scnt

SAD1 SS_ADDR 1 <int> yes no $sad1

SAD2 SS_ADDR 2 <int> yes no $sad2

SCD1 SS_CODE 1 <int> yes no $scd1

SCD2 SS_CODE 2 <int> yes no $scd2

TID <int> yes no

Table 39: Power MSR Register Bit Settings

Value Bit Setting Meaning
0x00040000 POW Power management enable

0x00020000 TGPR Temporary GPR mapping

0x00010000 ILE Exception little-endian mode

0x00008000 EE External interrupt enable

0x00004000 PR Privilege level

0x00002000 FP Floating-point available

0x00001000 ME Machine check enable

0x00000800 FE0 Floating-point exception mode 0

0x00000400 SE Single-step trace enable

0x00000200 BE Branch trace enable

0x00000100 FE1 Floating-point exception mode 1

0x00000040 IP Exception prefix

0x00000020 IR Instruction address translation

0x00000010 DR Data address translation

0x00000002 RI Recoverable exception

0x00000001 LE Little-endian mode enable

Table 38: Power General Purpose Integer Registers (cont.)

Register Description Data Type Edit Dive
Specify in
Expression
Version 5.0 TotalView Users Guide 345

3

C
Architectures

IBM Power
Power Floating-Point Registers

TotalView displays the Power floating-point registers in the Stack Frame
Pane of the Process Window. The next table describes how TotalView treats
each floating-point register, and the actions you can take with each regis-
ter.

Power FPSCR Register

For your convenience, TotalView interprets the bit settings of the Power FP-
SCR register. You can edit the value of the FPSCR and set it to any of the bit
settings outlined in the following table.

Table 40: Power Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F31 Floating-point registers
0 – 31

<double> yes yes $f0 – $f31

FPSCR Floating-point status
register

<int> yes no $fpscr

FPSCR2 Floating-point status
register 2

<int> yes no $fpscr2

Table 41: Power PFSCR Register Bit Settings

Value Bit Setting Meaning
0x80000000 FX Floating-point exception summary

0x40000000 FEX Floating-point enabled exception summary

0x20000000 VX Floating-point invalid operation exception
summary

0x10000000 OX Floating-point overflow exception

0x08000000 UX Floating-point underflow exception

0x04000000 ZX Floating-point zero divide exception

0x02000000 XX Floating-point inexact exception

0x01000000 VXSNAN Floating-point invalid operation exception for
SNaN

0x00800000 VXISI Floating-point invalid operation exception:
∞ − ∞
46 TotalView Users Guide Version 5.0

Architectures

IBM Power
0x00400000 VXIDI Floating-point invalid operation exception:
∞ / ∞

0x00200000 VXZDZ Floating-point invalid operation exception: 0 /
0

0x00100000 VXIMZ Floating-point invalid operation exception:
∞ * ∞

0x00080000 VXVC Floating-point invalid operation exception:
invalid compare

0x00040000 FR Floating-point fraction rounded

0x00020000 FI Floating-point fraction inexact

0x00010000 FPRF=(C) Floating-point result class descriptor

0x00008000 FPRF=(L) Floating-point less than or negative

0x00004000 FPRF=(G) Floating-point greater than or positive

0x00002000 FPRF=(E) Floating-point equal or zero

0x00001000 FPRF=(U) Floating-point unordered or NaN

0x00011000 FPRF=(QNAN) Quiet NaN; alias for FPRF=(C+U)

0x00009000 FPRF=(-INF) -Infinity; alias for FPRF=(L+U)

0x00008000 FPRF=(-NORM) -Normalized number; alias for FPRF=(L)

0x00018000 FPRF=(-DENORM) -Denormalized number; alias for FPRF=(C+L)

0x00012000 FPRF=(-ZERO) -Zero; alias for FPRF=(C+E)

0x00002000 FPRF=(+ZERO) +Zero; alias for FPRF=(E)

0x00014000 FPRF=(+DENORM) +Denormalized number; alias for FPRF=(C+G)

0x00004000 FPRF=(+NORM) +Normalized number; alias for FPRF=(G)

0x00005000 FPRF=(+INF) +Infinity; alias for FPRF=(G+U)

0x00000400 VXSOFT Floating-point invalid operation exception:
software request

0x00000200 VXSQRT Floating-point invalid operation exception:
square root

0x00000100 VXCVI Floating-point invalid operation exception:
invalid integer convert

0x00000080 VE Floating-point invalid operation exception
enable

0x00000040 OE Floating-point overflow exception enable

0x00000020 UE Floating-point underflow exception enable

Table 41: Power PFSCR Register Bit Settings (cont.)

Value Bit Setting Meaning
Version 5.0 TotalView Users Guide 347

3

C
Architectures

Intel-x86
Using the Power FPSCR Register
On AIX, if you compile your program to catch floating-point exceptions
(IBM compiler -qflttrap option), you can change the value of the FPSCR
within TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FPSCR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FPSCR to include 0x10 (as shown in
Table 41) so that TotalView traps the “divide by zero” exception. The string
displayed next to the FPSR register should now include ZE. Now, when your
program divides by zero, it receives a SIGTRAP signal, which will be caught
by TotalView. See Chapter 3 “Setting Up a Debugging Session” on page 33 and
“Handling Signals” on page 45 for more information. If you did not set the
bit for trapping divide by zero or you did not compile to catch floating-
point exceptions, your program would not stop and the processor would
set the ZX bit.

Intel-x86

This section contains the following information:

g Intel-x86 General Registers

g Intel-x86 Floating-Point Registers

g Intel-x86 FPCR Register

g Using the Intel-x86 FPCR Register

0x00000010 ZE Floating-point zero divide exception enable

0x00000008 XE Floating-point inexact exception enable

0x00000004 NI Floating-point non-IEEE mode enable

0x00000000 RN=NEAR Round to nearest

0x00000001 RN=ZERO Round toward zero

0x00000002 RN=PINF Round toward +infinity

0x00000003 RN=NINF Round toward -infinity

Table 41: Power PFSCR Register Bit Settings (cont.)

Value Bit Setting Meaning
48 TotalView Users Guide Version 5.0

Architectures

Intel-x86
g Intel-x86 FPSR Register

NOTE The Intel-x86 processor supports the IEEE floating-point format.

Intel-x86 General Registers

TotalView displays the Intel-x86 general registers in the Stack Frame Pane
of the Process Window. The following table describes how TotalView treats
each general register, and the actions you can take with each register.

Table 42: Intel-x86 General Registers

Register Description Data Type Edit Dive
Specify in
Expression

EAX General registers <void> yes yes $eax

ECX <void> yes yes $ecx

EDX <void> yes yes $edx

EBX <void> yes yes $ebx

EBP <void> yes yes $ebp

ESP <void> yes yes $esp

ESI <void> yes yes $esi

EDI <void> yes yes $edi

CS Selector registers <void> no no $cs

SS <void> no no $ss

DS <void> no no $ds

ES <void> no no $es

FS <void> no no $fs

GS <void> no no $gs

EFLAGS <void> no no $eflags

EIP Instruction pointer <code>[] no yes $eip

FAULT <void> no no $fault

TEMP <void> no no $temp

INUM <void> no no $inum

ECODE <void> no no $ecode
Version 5.0 TotalView Users Guide 349

3

C
Architectures

Intel-x86
Intel-x86 Floating-Point Registers

TotalView displays the x86 floating-point registers in the Stack Frame Pane
of the Process Window. The next table describes how TotalView treats each
floating-point register, and the actions you can take with each register.

Intel-x86 FPCR Register

For your convenience, TotalView interprets the bit settings of the FPCR and
FPSR registers.

Table 43: Intel-x86 Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) <extended> yes yes $st0

ST1 ST(1) <extended> yes yes $st1

ST2 ST(2) <extended> yes yes $st2

ST3 ST(3) <extended> yes yes $st3

ST4 ST(4) <extended> yes yes $st4

ST5 ST(5) <extended> yes yes $st5

ST6 ST(6) <extended> yes yes $st6

ST7 ST(7) <extended> yes yes $st7

FPCR Floating-point control
register

<void> yes no $fpcr

FPSR Floating-point status
register

<void> no no $fpsr

FPTAG Tag word <void> no no $fptag

FPIOFF Instruction offset <void> no no $fpioff

FPISEL Instruction selector <void> no no $fpisel

FPDOFF Data offset <void> no no $fpdoff

FPDSEL Data selector <void> no no $fpdsel
50 TotalView Users Guide Version 5.0

Architectures

Intel-x86
You can edit the value of the FPCR and set it to any of the bit settings out-
lined in the next table.

Using the Intel-x86 FPCR Register
You can change the value of the FPCR within TotalView to customize the ex-
ception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FPCR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FPCR to include 0x0004 (as shown in
Table 44) so that TotalView traps the “divide-by-zero” bit. The string dis-
played next to the FPCR register should now include EM=(ZM). Now, when
your program divides by zero, it receives a SIGFPE signal, which you can
catch with TotalView. See “Handling Signals” on page 45 for information on
handling signals. If you did not set the bit for trapping divide by zero, the
processor would ignore the error and set the EF=(ZE) bit in the FPSR.

Table 44: Intel-x86 FPCR Register Bit Settings

Value Bit Setting Meaning
RC=NEAR 0x0000 To nearest rounding mode

RC=NINF 0x0400 Toward negative infinity rounding mode

RC=PINF 0x0800 Toward positive infinity rounding mode

RC=ZERO 0x0c00 Toward zero rounding mode

PC=SGL 0x0000 Single-precision rounding

PC=DBL 0x0080 Double-precision rounding

PC=EXT 0x00c0 Extended-precision rounding

EM=PM 0x0020 Precision exception enable

EM=UM 0x0010 Underflow exception enable

EM=OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero-divide exception enable

EM=DM 0x0002 Denormalized operand exception enable

EM=IM 0x0001 Invalid operation exception enable
Version 5.0 TotalView Users Guide 351

3

C
Architectures

SGI MIPS
Intel-x86 FPSR Register

The bit settings of the Intel-x86 FPSR register are outlined in the following
table.

SGI MIPS

This section contains the following information:

g MIPS General Registers

g MIPS SR Register

g MIPS Floating-Point Registers

g MIPS FCSR Register

g Using the MIPS FCSR Register

g MIPS Delay Slot Instructions

NOTE The MIPS processor supports the IEEE floating-point format.

Table 45: Intel-x86 FPSR Register Bit Settings

Value Bit Setting Meaning
TOP=<i> 0x3800 Register <i> is top of FPU stack

B 0x8000 FPU busy

C0 0x0100 Condition bit 0

C1 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

EF=OE 0x0008 Overflow exception

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception

EF=IE 0x0001 Invalid operation exception
52 TotalView Users Guide Version 5.0

Architectures

SGI MIPS
MIPS General Registers

TotalView displays the MIPS general purpose registers in the Stack Frame
Pane of the Process Window. The following table describes how TotalView
treats each general register, and the actions you can take with each regis-
ter.

Programs compiled with either –64 or –n32 have 64-bit registers. TotalView
uses <long> for –64 compiled programs and <long long> for –n32 com-
piled programs.

Table 46: MIPS General (Integer) Registers

Register Description Data Type Edit Dive
Specify in
Expression

ZERO Always has the value 0 <long> no no $zero

AT Reserved for the assembler <long> yes yes $at

V0 – V1 Function value registers <long> yes yes $v0 – $v1

A0 – A7 Argument registers <long> yes yes $a0 – $a7

T0 – T3 Temporary registers <long> yes yes $t0 – $t3

S0 – S7 Saved registers <long> yes yes $s0 – $s7

T8 – T9 Temporary registers <long> yes yes $t8 – $t9

K0 – K1 Reserved for the operating
system

<long> yes yes $k1 – $k2

GP Global pointer <long> yes yes $gp

SP Stack pointer <long> yes yes $sp

S8 Hardware frame pointer <long> yes yes $s8

RA Return address register <code>[] no yes $ra

MDLO Multiply/Divide special
register, holds least-
significant bits of multiply,
quotient of divide

<long> yes yes $mdlo

MDHI Multiply/Divide special
register, holds most-
significant bits of multiply,
remainder of divide

<long> yes yes $mdhi

CAUSE Cause register <long> yes yes $cause

EPC Program counter <code>[] no yes $epc
Version 5.0 TotalView Users Guide 353

3

C
Architectures

SGI MIPS
MIPS SR Register

For your convenience, TotalView interprets the bit settings of the SR regis-
ter as outlined in the next table.

SR Status register <long> no no $sr

VFP Virtual frame pointer

The virtual frame pointer is a
software register that
TotalView maintains. It is not
an actual hardware register.
TotalView computes the VFP
as part of stack backtrace.

<long> no no $vfp

Table 47: MIPS SR Register Bit Settings

Value Bit Setting Meaning
0x00000001 IE Interrupt enable

0x00000002 EXL Exception level

0x00000004 ERL Error level

0x00000008 S Supervisor mode

0x00000010 U User mode

0x00000018 U Undefined (implemented as User mode)

0x00000000 K Kernel mode

0x00000020 UX User mode 64-bit addressing

0x00000040 SX Supervisor mode 64-bit addressing

0x00000080 KX Kernel mode 64-bit addressing

0x0000FF00 IM=i Interrupt Mask value is i

0x00010000 DE Disable cache parity/ECC

0x00020000 CE Reserved

0x00040000 CH Cache hit

0x00080000 NMI Non-maskable interrupt has occurred

0x00100000 SR Soft reset or NMI exception

0x00200000 TS TLB shutdown has occurred

0x00400000 BEV Bootstrap vectors

Table 46: MIPS General (Integer) Registers (cont.)

Register Description Data Type Edit Dive
Specify in
Expression
54 TotalView Users Guide Version 5.0

Architectures

SGI MIPS
MIPS Floating-Point Registers

TotalView displays the MIPS floating-point registers in the Stack Frame
Pane of the Process Window. Here is a table that describes how TotalView
treats each floating-point register, and the actions you can take with each
register.

0x02000000 RE Reverse-Endian bit

0x04000000 FR Additional floating-point registers enabled

0x08000000 RP Reduced power mode

0x10000000 CU0 Coprocessor 0 usable

0x20000000 CU1 Coprocessor 1 usable

0x40000000 CU2 Coprocessor 2 usable

0x80000000 XX MIPS IV instructions usable

Table 48: MIPS Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0, F2 Hold results of floating-
point type function; $f0
has the real part, $f2 has
the imaginary part

<double> yes yes $f0, $f2

F1 – F3,
F4 – F11

Temporary registers <double> yes yes $f1 – $f3,
$f4 – $f11

F12 – F19 Pass single- or double-
precision actual arguments

<double> yes yes $f12 – $f19

F20 – F23 Temporary registers <double> yes yes $f20 – $f23

F24 – F31 Saved registers <double> yes yes $f24 – $f31

FCSR FPU control and status
register

<int> yes no $fcsr

Table 47: MIPS SR Register Bit Settings (cont.)

Value Bit Setting Meaning
Version 5.0 TotalView Users Guide 355

3

C
Architectures

SGI MIPS
MIPS FCSR Register

For your convenience, TotalView interprets the bit settings of the MIPS
FCSR register. You can edit the value of the FCSR and set it to any of the bit
settings outlined in the following table.

Table 49: MIPS FCSR Register Bit Settings

Value Bit Setting Meaning
RM=RN 0x00000000 Round to nearest

RM=RZ 0x00000001 Round toward zero

RM=RP 0x00000002 Round toward positive infinity

RM=RM 0x00000003 Round toward negative infinity

flags=(I) 0x00000004 Flag=inexact result

flags=(U) 0x00000008 Flag=underflow

flags=(O) 0x00000010 Flag=overflow

flags=(Z) 0x00000020 Flag=divide by zero

flags=(V) 0x00000040 Flag=invalid operation

enables=(I) 0x00000080 Enables=inexact result

enables=(U) 0x00000100 Enables=underflow

enables=(O) 0x00000200 Enables=overflow

enables=(Z) 0x00000400 Enables=divide by zero

enables=(V) 0x00000800 Enables=invalid operation

cause=(I) 0x00001000 Cause=inexact result

cause=(U) 0x00002000 Cause=underflow

cause=(O) 0x00004000 Cause=overflow

cause=(Z) 0x00008000 Cause=divide by zero

cause=(V) 0x00010000 Cause=invalid operation

cause=(E) 0x00020000 Cause=unimplemented

FCC=(0/c) 0x00800000 FCC=Floating-Point Condition Code 0;
c=Condition bit

FS 0x01000000 Flush to zero

FCC=(1) 0x02000000 FCC=Floating-Point Condition Code 1

FCC=(2) 0x04000000 FCC=Floating-Point Condition Code 2

FCC=(3) 0x08000000 FCC=Floating-Point Condition Code 3

FCC=(4) 0x10000000 FCC=Floating-Point Condition Code 4

FCC=(5) 0x20000000 FCC=Floating-Point Condition Code 5
56 TotalView Users Guide Version 5.0

Architectures

SGI MIPS
Using the MIPS FCSR Register
You can change the value of the MIPS FCSR register within TotalView to
customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FCSR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FCSR to include 0x400 (as shown in
Table 49). The string displayed next to the FCSR register should now in-
clude enables=(Z). Now, when your program divides by zero, it receives a
SIGFPE signal, which you can catch with TotalView. See Chapter 3 “Setting
Up a Debugging Session” on page 33 and “Handling Signals” on page 45 for
more information.

MIPS Delay Slot Instructions

On the MIPS architecture, jump and branch instructions have a “delay
slot”. This means that the instruction after the jump or branch instruction
is executed before the jump or branch is executed.

In addition, there is a group of “branch likely” conditional branch instruc-
tions in which the instruction in the delay slot is executed only if the
branch is taken.

The MIPS processors execute the jump or branch instruction and the delay
slot instruction as an indivisible unit. If an exception occurs as a result of
executing the delay slot instruction, the branch or jump instruction is not
executed, and the exception appears to have been caused by the jump or
branch instruction.

This behavior of the MIPS processors affects both the TotalView instruction
step command and TotalView breakpoints.

FCC=(6) 0x40000000 FCC=Floating-Point Condition Code 6

FCC=(7) 0x80000000 FCC=Floating-Point Condition Code 7

Table 49: MIPS FCSR Register Bit Settings (cont.)

Value Bit Setting Meaning
Version 5.0 TotalView Users Guide 357

3

C
Architectures

Sun SPARC
The TotalView instruction step command will step both the jump or branch
instruction and the delay slot instruction as if they were a single instruc-
tion.

If a breakpoint is placed on a delay slot instruction, execution will stop at
the jump or branch preceding the delay slot instruction, and TotalView will
not know that it is at a breakpoint. At this point, attempting to continue
the thread that hit the breakpoint without first removing the breakpoint will
cause the thread to hit the breakpoint again without executing any instruc-
tions. Before continuing the thread, you must remove the breakpoint. If
you need to reestablish the breakpoint, you might then use the instruction
step command to execute just the delay slot instruction and the branch.

A breakpoint placed on a delay slot instruction of a branch likely instruction
will be hit only if the branch is going to be taken.

Sun SPARC

This section has the following information:

g SPARC General Registers

g SPARC PSR Register

g SPARC Floating-Point Registers

g SPARC FPSR Register

g Using the SPARC FPSR Register

NOTE The SPARC processor supports the IEEE floating-point format.
58 TotalView Users Guide Version 5.0

Architectures

Sun SPARC
SPARC General Registers

TotalView displays the SPARC general registers in the Stack Frame Pane of
the Process Window. The following table describes how TotalView treats
each general register, and the actions you can take with each register.

SPARC PSR Register

For your convenience, TotalView interprets the bit settings of the SPARC
PSR register. You can edit the value of the PSR and set some of the bits out-
lined in the following table.

Table 50: SPARC General Registers

Register Description Data Type Edit Dive
Specify in
Expression

G0 Global zero register <int> no no $g0

G1 – G7 Global registers <int> yes yes $g1 – $g7

O0 – O5 Outgoing parameter
registers

<int> yes yes $o0 – $o5

SP Stack pointer <int> yes yes $sp

O7 Temporary register <int> yes yes $o7

L0 – L7 Local registers <int> yes yes $l0 – $l7
I0 – I5 Incoming parameter

registers
<int> yes yes $i0 – $i5

FP Frame pointer <int> yes yes $fp

I7 Return address <int> yes yes $i7

PSR Processor status register <int> yes no $psr

Y Y register <int> yes yes $y

WIM WIM register <int> no no

TBR TBR register <int> no no

PC Program counter <code>[] no yes $pc

nPC Next program counter <code>[] no yes $npc

Table 51: SPARC PSR Register Bit Settings

Value Bit Setting Meaning
ET 0x00000020 Traps enabled

PS 0x00000040 Previous supervisor
Version 5.0 TotalView Users Guide 359

3

C
Architectures

Sun SPARC
SPARC Floating-Point Registers

TotalView displays the SPARC floating-point registers in the Stack Frame
Pane of the Process Window. The next table describes how TotalView treats
each floating-point register, and the actions you can take with each regis-
ter.

TotalView allows you to use these registers singly or in pairs, depending on
how they are used by your program. For example, if you use F1 by itself, its
type is <float>, but if you use the F0/F1 pair, its type is <double>.

S 0x00000080 Supervisor mode

EF 0x00001000 Floating-point unit enabled

EC 0x00002000 Coprocessor enabled

C 0x00100000 Carry condition code

V 0x00200000 Overflow condition code

Z 0x00400000 Zero condition code

N 0x00800000 Negative condition code

Table 52: SPARC Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0, F1, F0_F1 Floating-point registers (f
registers), used singly

<float> no yes $f0, $f1,
$f0_f1

F2 – F31 Floating-point registers (f
registers), used singly

<float> yes yes $f2– $f31

F0, F1, F0_F1 Floating-point registers (f
registers), used as pairs

<double> no yes $f0, $f1,
$f0_f1

F0/F1 –
F30/F31

Floating-point registers (f
registers), used as pairs

<double> yes yes $2 –
$f30_f31

FPCR Floating-point control
register

<int> no no $fpcr

FPSR Floating-point status
register

<int> yes no $fpsr

Table 51: SPARC PSR Register Bit Settings

Value Bit Setting Meaning
60 TotalView Users Guide Version 5.0

Architectures

Sun SPARC
SPARC FPSR Register

For your convenience, TotalView interprets the bit settings of the SPARC
FPSR register. You can edit the value of the FPSR and set it to any of the bit
settings outlined in the following table.

Table 53: SPARC FPSR Register Bit Settings

Value Bit Setting Meaning
CEXC=NX 0x00000001 Current inexact exception

CEXC=DZ 0x00000002 Current divide by zero exception

CEXC=UF 0x00000004 Current underflow exception

CEXC=OF 0x00000008 Current overflow exception

CEXC=NV 0x00000010 Current invalid exception

AEXC=NX 0x00000020 Accrued inexact exception

AEXC=DZ 0x00000040 Accrued divide by zero exception

AEXC=UF 0x00000080 Accrued underflow exception

AEXC=OF 0x00000100 Accrued overflow exception

AEXC=NV 0x00000200 Accrued invalid exception

EQ 0x00000000 Floating-point condition =

LT 0x00000400 Floating-point condition <

GT 0x00000800 Floating-point condition >

UN 0x00000c00 Floating-point condition unordered

QNE 0x00002000 Queue not empty

NONE 0x00000000 Floating-point trap type None

IEEE 0x00004000 Floating-point trap type IEEE Exception

UFIN 0x00008000 Floating-point trap type Unfinished FPop

UIMP 0x0000c000 Floating-point trap type Unimplemented FPop

SEQE 0x00010000 Floating-point trap type Sequence Error

NS 0x00400000 Nonstandard floating-point FAST mode

TEM=NX 0x00800000 Trap enable mask – Inexact Trap Mask

TEM=DZ 0x01000000 Trap enable mask – Divide by Zero Trap Mask

TEM=UF 0x02000000 Trap enable mask – Underflow Trap Mask

TEM=OF 0x04000000 Trap enable mask – Overflow Trap Mask

TEM=NV 0x08000000 Trap enable mask – Invalid Operation Trap Mask

EXT 0x00000000 Extended rounding precision – Extended
precision
Version 5.0 TotalView Users Guide 361

3

C
Architectures

Sun SPARC
Using the SPARC FPSR Register
The SPARC processor does not catch floating-point errors by default. You
can change the value of the FPSR within TotalView to customize the excep-
tion handling for your program.

For example, if your program inadvertently divides by zero, you can edit the
bit setting of the FPSR register in the Stack Frame Pane. In this case, you
would change the bit setting for the FPSR to include 0x01000000 (as
shown in Table 53) so that TotalView traps the “divide by zero” bit. The
string displayed next to the FPSR register should now include TEM=(DZ).
Now, when your program divides by zero, it receives a SIGFPE signal, which
you can catch with TotalView. See Chapter 3 “Setting Up a Debugging Session”
on page 33 and “Handling Signals” on page 45 for more information. If you
did not set the bit for trapping divide by zero, the processor would ignore
the error and set the AEXC=(DZ) bit.

SGL 0x10000000 Extended rounding precision – Single precision

DBL 0x20000000 Extended rounding precision – Double precision

NEAR 0x00000000 Rounding direction – Round to nearest (tie-
even)

ZERO 0x40000000 Rounding direction – Round to 0

PINF 0x80000000 Rounding direction – Round to +Infinity

NINF 0xc0000000 Rounding direction – Round to -Infinity

Table 53: SPARC FPSR Register Bit Settings (cont.)

Value Bit Setting Meaning
62 TotalView Users Guide Version 5.0

Glossary
ACTION POINT: A debugger feature that allows a user to request that program
execution stop under certain conditions. Action points include break-
points, watchpoints, evaluation points, and barriers.

ACTION POINT IDENTIFIER: A unique integer ID associated with an action
point.

ADDRESS SPACE: A region of memory that contains code and data from a
program. One or more threads can run in an address space. A process nor-
mally contains an address space.

AFFECTED P/T SET: The set of process and threads that will be affected by the
command. For most commands, this is identical to the target P/T set, but
in some cases it may include additional threads. (See “P/T (process/thread)
set” on page 371 for more information.)

AGGREGATED OUTPUT: The CLI compresses output from multiple threads
when they would be identical except for the P/T identifier.

ARENA: A specifier that indicates the processes, threads, and groups upon
which a command executes. Arena specifiers are p (process), t (thread), g
(group), d (default), and a (all).

ASYNCHRONOUS: IWhen processeses communicate with one another, they
send messages. If a process decides that it does not want to wait for an
answer, it is said to run “asynchronously”. For example, in most cli-
ent/server programs, one program sends an RPC request to a second pro-
gram and then waits to receive a response from the second program. This
is the normal synchronous mode of operation. If, however, the first program
Version 5.0 TotalView Users Guide 363

3

Glossary

automatic process acquisition
sends a message and then continues executing, not waiting for a reply, the
first mode of operations is said to be asynchronous.

AUTOMATIC PROCESS ACQUISITION: TotalView automatically detects the
many processes that parallel and distributed programs run in, and attaches
to them automatically so you do not have to attach to them manually. This
process is called automatic process acquisition. If the process is on a remote
machine, automatic process acquisition automatically starts the TotalView
Debugger Server (the tvdsvr).

BARRIER: An action point specifying that processes reaching a particular loca-
tion in the source code should stop and wait for other processes to catch
up.

BASE WINDOW: The original Process Window or Variable Window before you
dive into routines or variables. After diving, you can use a Reset or Undive
command to restore this original window.

BLOCKED: A thread state where the thread is no longer executing because it is
wating for an event to occur. In most cases, the thread is blocked because
it is waiting for a mutex or condition state.

BREAKPOINT: A point in a program where execution can be suspended to per-
mit examination and manipulation of data.

CALL STACK: A higher-level view of stack memory, interpreted in terms of
source program variables and locations.

CHILD PROCESS: A process created by another process (see “parent process”
on page 370) when that other process calls fork().

CLOSED LOOP: see closed loop.

CLUSTER DEBUGGING: The action of debugging a program that is running on
a cluster of hosts in a network. Typically, the hosts are homogeneous.

COMMAND HISTORY LIST: A debugger-maintained list storing copies of the
most recent commands issued by the user.

CONDITION SYNCHRONIZATON: A process that delays thread execution until
a condition is satisfied.
64 TotalView Users Guide Version 5.0

Glossary

debugging information
CONTEXTUALLY QUALIFIED (SYMBOL): A symbol that is described in terms
of its dynamic context, rather than its static scope. This includes process
identifier, thread identifier, frame number, and variable or subprocedure
name.

CORE FILE: A file containing the contents of memory and a list of thread regis-
ters. The operating system dumps (creates) a core file whenever a program
exits because of a severe error (such as an attempt to store into an invalid
address).

CORE-FILE DEBUGGING: A debugging session that examines a core file image.
Commands that modify program state are not permitted in this mode.

CROSS-DEBUGGING: A special case of remote debugging where the host plat-
form and the target platform are different types of machines.

CURRENT FRAME: The current portion of stack memory, in the sense that it
contains information about the subprocedure invocation that is currently
executing.

CURRENT LANGUAGE: The source code language used by the file containing
the current source location.

CURRENT LIST LOCATION: The location governing what source code will be
displayed in response to a list command.

DATASET: A set of array elements generated by TotalView and sent to the Visu-
alizer. (See “visualizer process” on page 376.)

DBELOG LIBRARY: A library of routines for creating event points and generat-
ing event logs from within TotalView. To use event points, you must link
your program with both the dbelog and elog libraries.

DBFORK LIBRARY: A library of special versions of the fork() and execve() calls
used by the TotalView debugger to debug multiprocess programs. If you
link your program with TotalView’s dbfork library, TotalView will be able to
automatically attach to newly spawned processes.

DEBUGGING INFORMATION: Information relating an executable to the source
code from which it was generated.
Version 5.0 TotalView Users Guide 365

3

Glossary

debugger initialization file
DEBUGGER INITIALIZATION FILE: An optional file establishing initial settings
for debugger state variables, user-defined commands, and any commands
that should be executed whenever TotalView or the CLI is invoked. Must be
called .tvdrc.

DEBUGGER PROMPT: A string printed by the CLI that indicates that it is ready
to receive another user command.

DEBUGGER SERVER: See tvdsvr process.

DEBUGGER STATE: Information that TotalView or the CLI maintains in order to
interpret and respond to user commands. Includes debugger modes, user-
defined commands, and debugger variables.

DISTRIBUTED DEBUGGING: The action of debugging a program that is run-
ning on more than one host in a network. The hosts can be homogeneous
or heterogeneous. For example, programs written with message-passing
libraries such as Parallel Virtual Machine (PVM) or Parallel Macros (PAR-
MACS) run on more than one host.

DIVE STACK: A series of nested dives that were performed in the same vari-
able window. The number of greater-than symbols (>) in the upper left-
hand corner of a Variable Window indicates the number of nested dives on
the dive stack. Each time that you undive, TotalView pops a dive from the
dive stack and decrements the number of greater-than symbols shown in
the Variable Window.

DIVING: The action of displaying more information about an item. For exam-
ple, if you dive into a variable in TotalView, a window appears with more
information about the variable.

DOPE VECTOR: This is a runtime descriptor that contains all information
about an object that requires more information than is available as a single
pointer or value. For example, you might declare a Fortran 90 pointer vari-
able that is a pointer to some other object but which has its own upper
bound as follows:

integer, pointer, dimension (:) :: iptr

Assume that you initialize it as follows:
66 TotalView Users Guide Version 5.0

Glossary

field editor
iptr => iarray (20:1:-2)

iptr is now a synonym for every other element in the first twenty elements
of iarray and this pointer array is in reverse order. For example, iptr(1)
maps to iarray(20), iptr(2) maps to iarray(18), and so on.

A compiler represents an iptr object using a run time descriptor) that con-
tains (at least) elements such as a pointer to the first element of the actual
data, a stride value, and a count of the number of elements (or equivalently
an upper bound).

DPID: Debugger ID. This is the ID TotalView uses for processes.

EDITING CURSOR: A black rectangle that appears when a TotalView GUI field is
selected for editing. You use field editor commands to move the editing
cursor.

EVALUATION POINT: A point in the program where TotalView evaluates a code
fragment without stopping the execution of the program.

EVENT LOG: A file containing a record of events for each process in a pro-
gram.

EVENT POINT: A point in the program where TotalView writes an event to the
event log for later analysis with TimeScan.

EXECUTABLE: A compiled and linked version of source files, containing a
“main” entry point.

EXPRESSION: An expression consists of symbols (possibly qualified), con-
stants, and operators, arranged in the syntax of the current source lan-
guage. Not all Fortran 90, C, and C++ operators are supported.

EXTENT: The number of elements in the dimension of an array. For example, a
Fortran array of integer(7,8) has an extent of 7 in one dimension (7 rows)
and an extent of 8 in the other dimension (8 columns).

FIELD EDITOR: A basic text editor that is part of TotalView’s interface. The
field editor supports a subset of GNU Emacs commands.
Version 5.0 TotalView Users Guide 367

3

Glossary

focus
FOCUS: The set of groups, processes, and threads upon which a CLI command
acts. The current focus is indicated in the CLI prompt (if you are using the
default prompt).

FRAME: An area in stack memory containing the information corresponding to
a single invocation of a subprocedure.

FULLY QUALIFIED (SYMBOL): A symbol is fully qualified when each level of
source code organization is included. For variables, those levels are exe-
cutable or library, file, procedure or line number, and variable name.

GID: The TotalView group ID.

GOI: The group of interest. This is the group that TotalView uses when it is try-
ing to determine what to step, stop, and the like.

GRIDGET: A dotted grid in the tag field that indicates you can set an action
point on the instruction.

GROUP: When TotalView starts processes, it places related processes in fami-
lies. These families are called “groups.”

GROUP OF INTEREST: The primary group that is affected by a command.

HEAP: An area of memory that your program uses when it dynamically allo-
cates blocks of memory. It is also how people describe my car.

HOST MACHINE: The machine on which the TotalView debugger is running.

INITIAL PROCESS: The process created as part of a load operation, or that
already existed in the run-time environment and was attached by TotalView
or the CLI.

INFINITE LOOP: See loop, infinite.

LVALUE: A symbol name or expression suitable for use on the left-hand side of
an assignment statement in the corresponding source language. That is,
the expression must be appropriate as the target of an assignment.

LHS EXPRESSION: This is a synonym for lvalue.

LOOP, INFINITE: see infinite loop.
68 TotalView Users Guide Version 5.0

Glossary

parallel program
LOWER BOUND: The first element in the dimension of an array or the slice of
an array. By default, the lower bound of an array is 0 in C and 1 in Fortran,
but the lower bound can be any number, including negative numbers.

MACHINE STATE: Convention for describing the changes in memory, regis-
ters, and other machine elements as execution proceeds.

MESSAGE QUEUE: A list of messages sent and received by message-passing
programs.

MPICH: MPI/Chameleon (Message Passing Interface/Chameleon) is a freely
available and portable MPI implementation. MPICH was written as a collab-
oration between Argonne National Lab and Mississippi State University. For
more information, see www.mcs.anl.gov/mpi.

MPMD (MULTIPLE PROGRAM MULTIPLE DATA) PROGRAMS: A program in-
volving multiple executables, executed by multiple threads and processes.

MUTEX (MUTUAL EXCLUSION): Techniques for sharing resources so that dif-
ferent users do not conflict and cause unwanted interactions.

NATIVE DEBUGGING: The action of debugging a program that is running on
the same machine as TotalView.

NESTED DIVE: TotalView lets you dive into pointers, structures, or arrays
within a variable. When you dive into one of these elements, TotalView
updates the display so that the new element is displayed. So, a nested dive
is a dive within a dive. You can return to the previous display by selecting
the left-facing arrow in the top right corner of the window.

NODE: A machine on a network. Each machine has a unique network name
and address.

OUT OF SCOPE: When symbol lookup is performed for a particular symbol
name and it is not found in the current scope or any containing scopes, the
symbol is said to be out of scope.

PARALLEL PROGRAM: A program whose execution involves multiple threads
and processes.
Version 5.0 TotalView Users Guide 369

3

Glossary

parallel tasks
PARALLEL TASKS: Tasks whose computations are independent of each other,
so that all such tasks can be performed simultaneously with correct results.
(llnl)

PARALLELIZABLE PROBLEM: A problem that can be divided into parallel
tasks. This may require changes in the code and/or the underlying algo-
rithm. (llnl)

PARCEL: The number of bytes required to hold the shortest instruction for the
target architecture.

PARENT PROCESS: A process that calls fork() to spawn other processes (usu-
ally called “child processes”).

PARMACS LIBRARY: A message-passing library for creating distributed pro-
grams that was developed by the German National Research Centre for
Computer Science.

PARTIALLY QUALIFIED (SYMBOL): A symbol name that includes only some of
the levels of source code organization (for example, filename and proce-
dure, but not executable). This is permitted as long as the resulting name
can be associated unambiguously with a single entity.

PC: This is an abbreviation for Program Counter.

PID: Depending on context, this is either the “process ID” or the the “program
ID”. In most cases, this will be a process ID.

POI: The process of interest. This is the process that TotalView uses when it is
trying to determine what to step, stop, and the like.

PROCESS: An executable that is loaded into memory and is running (or capa-
ble of running).

PROCESS GROUP: A group of processes associated with a multiprocess pro-
gram. A process group includes program control groups and share groups.

PROCESS/THREAD IDENTIFIER: A unique integer ID associated with a particu-
lar process and thread.

PROCESS OF INTEREST: The primary process that is affected by a command.
70 TotalView Users Guide Version 5.0

Glossary

satisfaction set
PROGRAM EVENT: A program occurrence that is being monitored by TotalView
or the CLI, such as a breakpoint.

PROGRAM CONTROL GROUP: A group of processes that includes the parent
process and all related processes. A program control group includes chil-
dren that were forked (processes that share the same source code as the
parent) and children that were forked with a subsequent call to execve()
(processes that do not share the same source code as the parent). Contrast
with share group.

PROGRAM STATE: A higher-level view of the machine state, where addresses,
instructions, registers, and such, are interpreted in terms of source pro-
gram variables and statements.

P/T (PROCESS/THREAD) SET: The set of threads drawn from all threads in all
processes of the target program.

PVM LIBRARY: Parallel Virtual Machine library. A message-passing library for
creating distributed programs that was developed by the Oak Ridge
National Laboratory and the University of Tennessee.

RACE CONDITION: A problem that occurs when threads try to simultaneously
access a resource. The result can be a deadlock, data corruption, or a pro-
gram fault.

REMOTE DEBUGGING: The action of debugging a program that is running on a
different machine than TotalView. The machine on which the program is
running can be located many miles away from the machine on which
TotalView is running.

RESUME COMMANDS: Commands that cause execution to restart from a
stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: This is a synonym for rvalue.

RVALUE: An expression suitable for inclusion on the right-hand side of an
assignment statement in the corresponding source language. In other
words, an expression that evaluates to a value or collection of values.

SATISFACTION SET: The set of processes and threads that must be held
before a barrier can be satisfied.
Version 5.0 TotalView Users Guide 371

3

Glossary

satisfied
SATISFIED: A condition indicating that all processes or threads in a group
have reached a barrier. Prior to this event, all executing processes and
threads are either running because they have not yet hit the barrier or are
being held at the barrier because not all of the processes or threads have
reached it. After the barrier is satisfied, the held processes or threads are
released, which means they can now be run. Prior to this event, they could
not be run.

SERIAL EXECUTION: Execution of a program sequentially, one statement at a
time. (llnl)

SERIAL LINE DEBUGGING: A form of remote debugging where TotalView and
the TotalView Debugger Server communicate over a serial line.

SHARE GROUP: A group of processes that includes the parent process and
any related processes that share the same source code as the parent. Con-
trast with program control group.

SHARED LIBRARY: A compiled and linked set of source files that are dynami-
cally loaded by other executables—and have no “main” entry point.

SIGNALS: Messages informing processes of asynchronous events, such as seri-
ous errors. The action the process takes in response to the signal depends
on the type of signal and whether or not the program includes a signal han-
dler routine, a routine that traps certain signals and determines appropri-
ate actions to be taken by the program.

SINGLE STEP: The action of executing a single statement and stopping (as if at
a breakpoint).

SLICE: A subsection of an array, which is expressed in terms of a lower bound,
upper bound, and stride. Displaying a slice of an array can be useful when
working with very large arrays, which is often the case in Fortran programs.

SOURCE FILE: Program file containing source language statements. TotalView
allows you to debug FORTRAN 77, Fortran 90, Fortran 95, C, C++, and
assembler.
72 TotalView Users Guide Version 5.0

Glossary

stopped/held state
SOURCE LOCATION: For each thread, the source code line it will execute next.
This is a static location, indicating the file and line number; it does not,
however, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS: The process created by a user process executing under
debugger control.

SPMD (SINGLE PROGRAM MULTIPLE DATA) PROGRAMS: A program involv-
ing just one executable, executed by multiple threads and processes.

STACK: A portion of computer memory and registers used to hold information
temporarily. The stack consists of a linked list of stack frames that holds
return locations for called routines, routine arguments, local variables, and
saved registers.

STACK FRAME: A section of the stack that contains the local variables, argu-
ments, contents of the registers used by an individual routine, a frame
pointer pointing to the previous stack frame, and the value of the program
counter (PC) at the time the routine was called.

STACK POINTER: A pointer to the area of memory where subprocedure argu-
ments, return addresses, and similar information is stored.

STACK TRACE: A sequential list of each currently active routine called by a
program and the frame pointer pointing to its stack frame.

STATIC (SYMBOL) SCOPE: A region of a program's source code that has a set
of symbols associated with it. A scope can be nested inside another scope.

STEPPING: Advancing program execution by fixed increments, such as by
source code statements.

STOP SET: A set of threads that should be stopped once an action point has
been triggered.

STOPPED/HELD STATE: The state of a process whose execution has paused in
such a way that another program event (for example, arrival of other
threads at the same barrier) will be required before it is capable of continu-
ing execution.
Version 5.0 TotalView Users Guide 373

3

Glossary

stopped/runnable state
STOPPED/RUNNABLE STATE: The state of a process whose execution has
been paused (for example, when a breakpoint triggered or due to some
user command) but can continue executing as soon as a resume command
is issued.

STOPPED STATE: The state of a process that is no longer executing, but will
eventually execute again. This is subdivided into stopped/runnable and
stopped/held.

STRIDE: The interval between array elements in a slice and the order in which
the elements are displayed. If the stride is 1, every element between the
lower bound and upper bound of the slice is displayed. If the stride is 2,
every other element is displayed. If the stride is –1, every element between
the upper bound and lower bound (reverse order) is displayed.

SYMBOL: Entities within program state, machine state, or debugger state.

SYMBOL LOOKUP: Process whereby TotalView consults its debugging informa-
tion to discover what entity a symbol name refers to. Search starts with a
particular static scope and occurs recursively so that containing scopes are
searched in an outward progression.

SYMBOL NAME: The name associated with a symbol known to TotalView (for
example, function, variable, data type, and such).

SYMBOL TABLE: A table of symbolic names (such as variables or functions)
used in a program and their memory locations. The symbol table is part of
the executable object generated by the compiler (with the –g option) and is
used by debuggers to analyze the program.

SYNCHRONIZATION: A mechanism that prevents problems caused by concur-
rent threads manipulating shared resources. The two most common mech-
anisms for synchronizing threads are mutual exclusion and condition
synchronization.

TAG FIELD: The left margin in the Source Pane of the TotalView Process Win-
dow containing boxed line numbers marking the lines of source code that
actually generate executable code.
74 TotalView Users Guide Version 5.0

Glossary

tvdsvr process
TARGET MACHINE: The machine on which the process to be debugged is run-
ning.

TARGET PROCESS SET: The target set for those occasions when operations
can only be applied to entire processes, not to individual threads within a
process.

TARGET PROGRAM: The executing program that is the target of debugger
operations.

TARGET P/T SET: The set of processes and threads upon which a CLI com-
mand will act.

TASK: A logically discrete section of computational work. (This is an informal
definition.) (llnl)

THREAD: An execution context that normally contains a set of private registers
and a region of memory reserved for an execution stack. A thread runs in
an address space.

THREAD EXECUTION STATE: The convention of describing the operations
available for a thread, and the effects of the operation, in terms of a set of
predefined states.

THREAD OF INTEREST: The primary thread that will be affected by a com-
mand.

TID: The thread ID.

TOI: The thread of interest. This is the primary thread that will be affected by a
command.

TRIGGER SET: The set of threads that can trigger an action point (that is, the
threads upon which the action point was defined).

TRIGGERS: The effect during execution when program operations cause an
event to occur (such as, arriving at a breakpoint).

TVDSVR PROCESS: The TotalView Debugger Server process, which facilitates
remote debugging by running on the same machine as the executable and
communicating with TotalView over a TCP/IP port or serial line.
Version 5.0 TotalView Users Guide 375

3

Glossary

undiving
UNDIVING: The action of displaying the previous contents of a window, instead
of the contents displayed for the current dive. To undive, you dive on the
undive icon in the upper right-hand corner of the window.

UPPER BOUND: The last element in the dimension of an array or the slice of
an array.

USER INTERRUPT KEY: A keystroke used to interrupt commands, most com-
monly defined as ^C (Ctrl-C).

VARIABLE WINDOW: A TotalView window displaying the name, address, data
type, and value of a particular variable.

VISUALIZER PROCESS: A process that works with TotalView in a separate win-
dow, allowing you to see a graphical representation of program array data.

WATCHPOINT: An action point specifying that execution should stop when-
ever the value of a particular variable is updated.

Citations

LLNL: This definition was taken from documention residing on the web site of
the Lawrence Livermore National Laboratories. www.llnl.gov

:
76 TotalView Users Guide Version 5.0

Index
Symbols
$clid intrinsic 234
$count intrinsic 218, 221, 236
$countall intrinsic 236
$countthread intrinsic 236
$debug assembler pseudo op 243
$denorm filter 190
$duid intrinsic 234
$hold assembler pseudo op 243
$hold intrinsic 237
$holdprocess assembler pseudo

op 243
$holdprocess intrinsic 237
$holdprocessall intrinsic 237
$holdprocessstopall assembler

pseudo op 243
$holdstopall assembler pseudo

op 243
$holdstopall intrinsic 237
$holdthread assembler pseudo

op 244
$holdthread intrinsic 237
$holdthreadstop assembler

pseudo op 244
$holdthreadstop intrinsic 237
$holdthreadstopall assembler

pseudo op 244
$holdthreadstopall intrinsic 237

$holdthreadstopprocess
assembler pseudo op 244

$holdthreadstopprocess intrinsic
237

$inf filter 189
$long_branch assembler pseudo

op 244
$nan filter 189
$nanq filter 189
$nans filter 189
$ndenorm filter 190
$newval intrinsic 230, 235
$nid intrinsic 235
$ninf filter 190
$oldval intrinsic 230, 235
$pdenorm filter 190
$pid intrinsic 235
$pinf filter 190
$processduid intrinsic 235
$stop assembler pseudo op 244
$stop intrinsic 221, 231, 237
$stopall assembler pseudo op

244
$stopall intrinsic 237
$stopprocess assembler pseudo

op 244
$stopprocess intrinsic 237

$stopthread assembler pseudo
op 244

$stopthread intrinsic 237
$systid intrinsic 235
$tid intrinsic 235
$value intrinsic 192
$visualize 112, 238

in animations 254
in expressions 253
using casts 253

$visualize intrinsic 252
%C server launch replacement

character 308
%C server launch replacement

characters 66
%C single process server launch

command 66
%D bulk server launch command

68
%D pathname replacement

character 308
%D single process server launch

command 67
%H bulk server launch command

68
%H hostname replacement

character 308
Version 5.0 TotalView Users Guide 377

Index

37
%L bulk server launch command
68

%L host and port replacement
character 308

%L single process server launch
command 67

%N bulk server launch command
69

%N line number replacement
character 308

%P bulk server launch command
68

%P password replacement
character 308

%P single process server launch
command 67

%R single process server launch
command 66

%S source file replacement
character 308

%t1 bulk server launch command
69

%t1 file replacement character
309

%t2 bulk server launch command
69

%t2 file replacement character
309

%V bulk server launch command
68

%V verbosity setting replacement
character 309

&& operator 192
. (period)

in suffix of process names 136
.pghpfrc file 115
.rhosts file 70, 85
.stb files 279
.stx files 279
.Xdefaults file 17, 57, 275
/proc file system 322
/usr/lib/array/arrayd.conf file 69
: (colon), in array type strings 163
: as array separator 184
<address> data type 166
<char> data type 166
<character> data type 166

<code> 158
<code> data type 166, 169
<complex*16> data type 166
<complex*8> data type 166
<complex> data type 166
<double precision> data type

167
<double> data type 166
<extended> data type 167
<float> data type 167
<int> data type 167
<integer*1> data type 167
<integer*2> data type 167
<integer*4> data type 167
<integer*8> data type 167
<integer> data type 167
<logical*1> data type 167
<logical*2> data type 167
<logical*4> data type 167
<logical*8> data type 167
<logical> data type 167
<long long> data type 167
<long> data type 167
<real*16> data type 167
<real*4> data type 167
<real*8> data type 167
<real> data type 167
<short> data type 167
<string> data type 162, 168
<void> data type 168
> (right angle bracket), indicating

nested dives 160

Numerics
4142 default port 65

A
–a option to totalview command

35, 51, 290
absolute addresses, display

assembler as 130
acquiring processes 87

at startup 77
Action Point > At Location 205
Action Point > At Location

Dialog Box figure 205

Action Point > Properties 123,
205, 207, 209, 213, 217,
249

deleting barrier points 215
Action Point > Properties dialog

box 211
figure 214

Action Point > Properties Dialog
Box figure 206, 210

Action Point > Save All 232
Action Point > Set Barrier 213
Action Point > Suppress All 207
Action Point Symbol figure 203
action points 8

barrier points defined 8
breakpoint defined 8
common properties 202
conditional defined 8
definition 201
deleting 207
disabling 207
enabling 207
evaluation points defined 8
ignoring 207
list of 25
loading automatically 297
machine-level 129
saving 232, 299
suppressing 207
types of 8
unsuppressing 207
watchpoints defined 8

Action Points > Properties 202
Action Points > Save All

command 232
Action Points > Suppress All

command 207
Action Points page 120
Action Points pane 25, 207
adaptor_use option 85
Add Directories Dialog Box figure

50
adding environment variables 58
Address Only (Absolute

Addresses) figure 130
address range conflicts 223
address space, shared 6
8 TotalView Users Guide Version 5.0

Index
addresses
changing 171
editing 171
of machine instructions 172
retracing 276
specifying in variable window

156
tracking in variable window

154
AIX

compiling on 313
linking C++ to dbfork library

319
linking to dbfork library 318
swap space 326

align assembler pseudo op 244
allocated arrays, displaying 169,

170
Alpha

architecture 337
floating-point registers 338
FPCR register 339
general registers 338

Ambiguous Function dialog box
205

Ambiguous Function Name
Dialog Box figure 206

ambiguous function names 205
Ambiguous Line dialog box 97,

143, 204
Ambiguous Line Dialog Box figure

143, 204
ambiguous locations 205
ambiguous names 128
ambiguous source lines 143
angle brackets, in windows 160
animation using $visualize 254
architectures 337

Alpha 337
HP PA-RISC 340
Intel-x86 348
MIPS 352
PowerPC 344
SPARC 358

areas of memory, data type 168
arguments

for totalview command 289

for tvdsvr command 304
in server launch command 66,

71
passing to program 35
setting 50

Arguments page 51
argv, displaying 169
Array Data Filter by Range of

Values figure 191
array data filtering 193

by comparison 188
by range of values 190
for IEEE values 189

Array Data Filtering by
Comparison figure 189

Array Data Filtering for IEEE
Values figure 191

array rank 250
array services handle (ash) 90
Array Statistics Window figure 195
array visualization 253
arrays

$value special variable 192
array data filtering 188
bounds 163
character 168
checksum statistic 194
colon separators 184
count statistic 194
deferred shape 178, 183
denormalized count statistic

195
display subsection 164
displaying 183
displaying allocated 170
displaying argv 169
displaying contents 27
displaying declared 169
displaying one element 187
displaying slices 183
diving into 159
editing dimension of 164
examining data of 9
extent 164
filter conversion rules 193
filter expressions 190
filtering 164, 188, 189

filtering data 193
filtering options 188
in C 163
in Fortran 163
infinity count statistic 195
laminating 198
limiting display 186
lower adjacent statistic 195
lower bound 163
lower bound of slices 184
lower bounds 163
maximum statistic 195
mean statistic 196
median statistic 196
minimum statistic 196
multidimensional slices 185
NaN statistic 196
non-default lower bounds 164
overlapping nonexistent

memory 183
pointers to 163
quartiles statistic 196
reversed indexing of 184
skipping elements 185
skipping over elements 184
slice example 184, 185
slices with the variable

command 186
sorting 188, 193
standard deviation statistic

196
statistics 194
stride elements 184
subsections 183
sum statistic 196
type strings for 163
upper adjacent statistic 196
upper bound 163
upper bound of slices 184
visualizing 251
visualizing data 11
zero count statistic 196

arrow over line number 25
Ascending command 193
ascii assembler pseudo op 244
asciz assembler pseudo op 244
ash (array services handle) 90
Version 5.0 TotalView Users Guide 379

Index

38
ask on dlopen option 331
–ask_on_dlopen option 290, 333
ASM icon 202, 208
assembler

absolute addresses 130
and –g compiler option 26
constructs 241
display symbolically 277
displaying 130
examining 129
expressions 241
in code fragment 8, 216
symbolic addresses 130

Assembler > By Address 130
Assembler > Symbolically 130
Assembler and Source

Interleaved figure 209
Assembler command 129
Assembler Only (Symbolic

Addresses) figure 131
assembler operators, TotalView

243
assembler-level action points 202
at breakpoint state 44
At Location command 205
Attach subsets command 117
attached page 20, 88, 137, 147,

148
Attached Page Showing Process

and Thread Status figure
44

attached process states 44
attached thread states 44
attaching

remote processes, by diving 38
selective 117
to a task 109
to all 119
to HP MPI job 84
to job 87
to MPICH application 80
to MPICH job 80
to none 119
to PE 87
to processes 20, 38, 39, 87,

108, 117
to PVM task 108

to relatives 41
to RMS processes 89
to SGI MPI job 90

attaching to processes 39
attaching TotalView to poe 88
attaching using File > New

Program 40
Auto Visualize, in Directory

Window 255
auto-launch 62
autolaunch 61

changing 70
disabling 62, 63, 70
not working 65
sequence 71

automatic group creation 7
automatic process acquisition 7,

77, 80, 84, 107
autoRetraceAddresses X resource

276

B
B state 44
background color 276
–background option 290
backgroundColor X resource 276
–barr_stop_all option 290
barrier breakpoint 5, 148, 212

defined 5, 8, 212
states 213

barrier breakpoints
see also breakpoints
see also process barrier

breakpoint
barrier points

clearing 207
deleting 215
stopped process 215

base window, defined 159
baud rate

for serial line 73
specifying 306

–bg option 290
bit fields 161
–bkeepfile option 319
Block Distributed Array on Three

Processes figure 113

blocking send operations 95
bounds for arrays 163
boxed line number 22, 25, 203
branch out instruction 221
Breakpoint at Assembler

Instruction figure 208
breakpoints

and MPI_Init() 87
apply to all threads 202
automatically copied from

master process 80
barrier 5
barrier defined 5
behavior when reached 208
changing for parallelization

120
clearing 19, 207
conditional 216, 218, 236
copy, master to slave 80
countdown 218, 236
counting down 236
default stopping action 120
defined 8, 201
deleting 207
disabling 207
enabling 207
entering 90
example setting in

multiprocess program
212

fork() 211
ignoring 207
in child process 209
in multiple outlines routines

97
in parent process 209
in spawned process 107
listing 25
machine-level 129, 208
multiple processes 209
not shared in separated

children 211
placing 25
poping Process window 280
reloading 86
removed when detaching 42
removing 19
0 TotalView Users Guide Version 5.0

Index
saving 232
set while a process is running

203
set while running parallel tasks

86
setting 19, 22, 86, 203, 209
setting for HPF 115
shared by default in processes

211
sharing 5, 209, 211
stop all related processes 209
suppressing 207
thread-specific 235
toggle location at source-line

number 205
toggling 205
while stepping over 144

bss assembler pseudo op 244
built-in statements, see intrinsics
built-in type strings 166
bulk launch 308

command 63
enabling 63

Bulk Launch page 65
bulk server launch 61, 63

on IBM RS/6000 69
on SGI MIPS 68

bulk server launch command
%D 68
%H 68
%L 68
%N 69
%P 68
%t1 69
%t2 69
%V 68
–callback_host 68
–callback_ports 68
–set_pws 68
–verbosity 68
–working_directory 68

By Address command 130
byte assembler pseudo op 244

C
C language

array bounds 163

arrays 163
file suffixes 16
filter expression 190
how data types are displayed

162
in code fragment 8, 216
in evaluation points 238
type strings supported 162
type strings, parameter in

.Xdefaults file 277
C shell 323
C++

changing class types 173
demangler 293
display classes 172
in code fragment 8
including libdbfork.h 319
templates, ambiguous source

lines in 204
C++ Type Cast to Base Class

Dialog Box figure 174
C++ Type Cast to Derived Class

Dialog Box figure 174
call stack 25
call tree 11

updating display 126
Call Tree command 126
–callback option 303, 304
–callback_host 304
–callback_host bulk server launch

command 68
–callback_option single process

server launch command
67

–callback_ports 304
–callback_ports bulk server

launch command 68
case-sensitivity in searches 281
casting 9, 161, 163

examples 169
to type 158
types of variable 161

Casting Code figure 159
ch_lfshmem device 78
ch_mpl device 78
ch_p4 device 78, 81, 122
ch_shmem device 78, 81

changing
autolaunch options 62
global variables 139
program control groups 138
values 28
variables 161

char data type, retaining data as
168

character arrays 168
chasing pointers 159
checksum array statistic 194
child process names 136
children calling execve(), see

execve()
classes, displaying 172
Clear All STOP and EVAL

command 207
clear the continuation signal 149
clearing

breakpoints 19, 207, 209
evaluation points 19

CLI 7
initialization 17
initialization file 17
-s switch 17
starting 16, 35

$clid intrinsic 234
Close command 27, 158
Close Relatives command 27
Close Similar command 27, 158
Close, in Data Window 256
closed loop, see closed loop
closing variable windows 158
cluster ID 234
code constructs supported

Assembler 241
C 238
Fortran 239

<code> data type 169, 171
code fragments 216, 234

modifying instruction path 216
when executed 216
which programming languages

216
within evaluation 8

colons as array separators 184
color in foreground 278
Version 5.0 TotalView Users Guide 381

Index

38
comm assembler pseudo op 244
Command Line 17
command line arguments 51

passing to TotalView 35
command line option, launch

Visualizer 266
commands 35

Action Points > Save All 232
Action Points > Suppress All

207
arguments 50
change Visualizer launch 250
Clear All STOP and EVAL 207
Create Process (without

starting it) 139
Detach from Process 41
dmpirun 82, 83
dpvm 106
File > Close 158
File > Search Path 48
Group > Delete 96
Group > Go 138
group or process 121
input and output files 51
mpirun 84, 89, 117
New Program 40, 308
pghpf 116
poe 79, 85, 114
Process > Go 83, 88, 89, 139
Process > Startup Parameters

51
prun 88
pvm 104, 106
Quit Debugger 31
quitting TotalView 31
remsh 70
Reset View 263
rsh 70, 85
server launch, arguments 66
Set Search Directory 273, 274,

281
Set Signal Handling Mode 105
single-stepping 143
Thread > Go 139
Thread > Set PC 150
Tools > Evaluate 233
Tools > Message Queue 92

Tools > Statistics 194
totalview 16, 35, 82, 86, 89

command-line options 275
core files 35, 42
syntax and use 289

totalviewcli 16, 35
tvdsvr 61

launching 66
syntax and use 303

View > Lookup Variable 155,
177

View > Source As >
Interleaved 149

View > Variable 100
visualize 250, 251, 266
xrdb 274, 275

common block
displaying 174
diving on 174
if composite object 175
initial address of 175
members have function scope

174
Multiple tag 175

Compaq Tru64 UNIX
/proc file system 322
linking to dbfork library 317
swap space 324

compiled expressions 220, 221
allocating patch space for 221
performance 220

compileExpressions X resource
277

–compiler_vars option 292
compilers

KCC 279
mpcc_r 92
mpxlf_r 92
mpxlf90_r 92

compilerVars X resource 276
compiling

considerations 34
debugging symbols 311
–g compiler option 15, 34, 311
HPF code 116
multiprocess programs 33
–O option 34

on Compaq Tru64 UNIX 312
on HP-UX 312
on IRIX 314
on SunOS 315
optimization 34
options 311
programs 15, 33
recompiling 38

compound objects 165
conditional breakpoints 216, 218,

236
defined 8

conditional watchpoints, see
watchpoints

conf file 69
configure command 79
configuring for the Visualizer 249
connecting to a remote host 38
connection directory 308
connection for serial line 72
connection timeout 62, 64

altering 62
console output for tvdsvr 305
contained functions 177
context menus 19
context-sensitive help 13
continuation signal 148

clearing 149
Continuation Signal command

42, 148
continuing with a signal 148
contour lines 263
contour settings 260
control groups 135

discussion 136
control registers 151

interpreting 151
conversion rules for filters 193
Copy command 28
copying between windows 28
core dump, naming the signal

that caused 43
core files

can only debug local 43
examining 7, 42
in totalview command 35, 42
loading 37
2 TotalView Users Guide Version 5.0

Index
correcting programs 219
count array statistic 194
$count intrinsic 236
$countall intrinsic 236
countdown breakpoints 218, 236
$countthread intrinsic 236
CPU registers 151
cpu_use option 85
Create Checkpoint command 151
Create Process (without starting

it) command 139
creating groups 138
creating processes 50, 138

and starting them 138
errors 270
using Step 139
without starting them 139

crt0.o module 108
cTypeStrings X resource 277
current data size limit 325
current location of program

counter 25
current queue state 90
current stack frame 132
current working directory 49, 50
customizing TotalView 275
Cut command 28

D
d_process object 322
data

displaying 9
examining 9
manipulating 9
viewing, from Visualizer 257

data assembler pseudo op 244
data pane, laminated 198
data size limit in C shell 323
data types

see also TotalView data types
<string> 162
C++ 172
changing 9, 161
changing class types in C++

173
chars, retaining as 168
for visualization 250

int 162
int* 162
int[] 162
opaque data 171
pointers to arrays 163
predefined 166
to visualize 250
user-defined 174

data watchpoints, see
watchpoints

data window 255
scaling 260
translating 260
Visualizer, display commands

256
zooming 260

data*pick_message.background
X resource 285

dataset
deleting 254
for Visualizer 250
selecting 254
showing parameters 263

dbfork library 34, 211
linking with 34, 317
syntax 293

–dbfork option 292
dcheckpoint CLI command 151
deadlocks 142
deadlocks, message passing 92
$debug assembler pseudo op 243
–debug, using with MPICH 96
–debug_file option 293, 305
debugger initialization 17
debugger initialization file 17

see also initialization
debugger server 61, 303

see also, tvdsvr
starting manually 65

Debugger Unique ID (DUID) 234
debugging

distributed programs 10
executable file 35
HPF code 117, 296
multiprocess programs 34
not compiled with –g 16
OpenMP applications 96

programs that call execve 34
programs that call fork 34
PVM applications 103
QSW RMS 88
SHMEM library code 110

Debugging a Distributed Program
with TotalView, figure 3

Debugging a Remote Program
with TotalView, figure 2

debugging Fortran modules 177
debugging on a remote host 37
debugging over a serial line 72
debugging PE applications 84
debugging PVM applications 104
debugging setuid programs 272
declared arrays, displaying 169,

170
decw$sm_general.dat 275
def assembler pseudo op 244
default address range conflicts

223
default font 278
deferred shape array definition

183
deferred shape array types 178
delay slot instructions for MIPS

357
Delete command 28, 38, 121, 150
Delete, in Data Window 256
deleting

action points 207
datasets 254
processes 217
programs 150

–demangler option 293
denorm filter 190
denormalized count array

statistic 195
DENORMs 188
Descending command 194
Detach command 38, 42
Detach from Process command

41
detaching from a process 42
detaching from processes 41
detaching removes all

breakpoints 42
Version 5.0 TotalView Users Guide 383

Index

38
dimmed information, in the root
window 147

Dimmed Process Information in
the Root Window figure
148

directories, setting order of
search 48

directory search path 105
Directory Window, menu

commands 254
directory*auto_visualize.set X

resource 285
Directory, in Data Window 256
directory.width X resource 285
disabling

action points 207
autolaunch 62, 70
autolaunch feature 63
PVM support 105, 106, 277,

281, 298
disabling visualization 249
disassembly, in variable window

172
discard mode for signals 48
discarding signal problem 48
Display of Random Data figure

261
–display option 293
displayAssemblerSymbolically X

resource 277
displaying 27

areas of memory 156
argv array 169
array data 27
arrays 183
common blocks 174
data 9
declared and allocated arrays

169, 170
Fortran data types 174
Fortran module data 175
global variables 155
HPF distributed array node

296
machine instructions 157, 171
memory 156
pointer 27

pointer data 27
registers 153
remote hostnames 22
stack trace pane 27
structs 164
subroutines 26
thread objects 181
typedefs 164
unions 165
variable 27
variable windows 153

displaying a process window 26
Displaying a Union figure 165
Displaying C++ Classes that Use

Inheritance figure 172
Displaying Long STL Names figure

157
displaying long variable names

155
Dist (distributed) indicator 112
distributed debugging 10

see also PVM applications
remote server 61

Dive 9
Dive Anew 27
dive mouse button 26
dive stack 160
Dive Thread command 181
Dive Thread New command 181
diving 19, 26, 87, 90

from groups page 138
in a laminated pane 198
in a variable window 159
in source code 128
into a pointer 27, 159
into a process 26
into a stack frame 27
into a structure 159
into a thread 26
into a variable 27
into an array 159
into formal parameters 153
into Fortran common blocks

175
into function name 128
into functions 9
into global variables 155

into local variables 153
into MPI buffer 94
into MPI processes 93
into parameters 153
into processes 40
into PVM tasks 108
into registers 153
into the PC 158
into threads 25
nested 27
nested dive defined 159
pointer 27
processes 26
replacing contents 160
routines 26
threads 26
variable 27
variables 27

Diving into Common Block List in
Stack Frame Pane figure
175

Diving into Local Variables and
Registers figure 154

DLL Do Query on Load list 332
DLL Don’t Query on Load list 332
dlopen 331
DMPI 92
dmpirun command 82, 83
double assembler pseudo op 244
double-clicking 9
DPVM

see also PVM
enabling support for 106
must be running before

TotalView 106
starting session 106

dpvm command 106
–dpvm option 106, 294, 305
dpvm option 106
DPVMDebugging X resource 277
drestart CLI command 151
DUID 234

of process 235
$duid intrinsic 234
–dump_core option 294
Duplicate Base command 27, 160
Duplicate command 27, 161
4 TotalView Users Guide Version 5.0

Index
dynamic call tree 11, 126
dynamic libraries, debugging in

PVM 110
dynamic library support

limitations 334
–dynamic option 294
dynamic patch space allocation

222
dynamically linked, stopping after

start() 108
dynamically loaded libraries 114,

331

E
E state 45
Edit > Copy 28
Edit > Cut 28
Edit > Delete 28
Edit > Find 28
Edit > Find Again 28
Edit > Find Dialog Box figure 29
Edit > Paste 28
edit mode 19
Edit Source command 127, 132
editing

addresses 171
laminated pane 198
source text 132
text 28
type strings 161

Editing argv figure 170
editing compound objects or

arrays 165
Editing Cursor figure 28
editor launch string 132

changing 132
ELOG icon

for event points 19
enabling

action points 207
PVM support 105, 106, 277,

281, 298
Environment page 58
environment variables 58

adding 58
adding new ones to

environment 58

before starting poe 85
how to enter 58
LD_LIBRARY_PATH 317, 318,

320
MP_ADAPTOR_USE 85
MP_CPU_USE 85
MP_EUIDEVELOP 94
PGI 114
TVDSVRLAUNCHCMD 66

equiv assembler pseudo op 244
error state 44, 45
errors 269

in multiprocess program 47
EVAL (Evaluate Expression)

button 217
EVAL icon 19

for evaluation points 19
EVAL point, see evaluation points
Evaluate command 232, 233,

234, 249
evaluating an expression in a

watchpoint 225
evaluating expressions 232, 233
evaluation points 216

assembler constructs 241
C constructs 238
clearing 19
commands 236
defined 8, 202
defining 216
examples 218
Fortran constructs 239
HPF restriction 112
listing 25
lists of 25
machine level 129, 216
saving 217
setting 19, 217
where generated 216

event log window 59
event points listing 25
examining

process groups 137
source and assembler code

129
stack trace and stack frame

153

status and control registers
151

examining core files 42
examining data 9
examining processes 135
Example of Control Groups and

Share Groups figure 137
exception data on Compaq Tru64

316
exception enable modes 151
executables

debugging 35
reloading 38

executing
out of function 146
to a selected line 144
to the completion of a

function 146
executing a start-up file 17
execution context, private 6
execution stack, thread private 6
execve() 2, 34, 39, 135, 136, 211,

317
attaching to processes 39
call failed 270
debugging programs that call

34
failure of 270
setting breakpoints with 211

Exit command 31
Exit, from Visualizer 254
exiting TotalView 31
expanding path names 138
expression evaluation window

compiled and interpreted
expressions 220

discussion 232
expression system

AIX 335
Alpha 335
IRIX 335

expressions 209
can contain loops 232
compiled 221
evaluating 232
performance of 220
using 8
Version 5.0 TotalView Users Guide 385

Index

38
–ext option 295
extensions, filename 16
extent of arrays 164

F
f77 generated 116
fatal errors 323
–fg option 295
figures

Action Point > At Location
Dialog Box 205

Action Point > Properties
Dialog Box 206, 210,
214

Action Point Symbol 203
Add Directories Dialog Box 50
Address Only (Absolute

Addresses) 130
Ambiguous Function Name

Dialog Box 206
Ambiguous Line Dialog Box

143, 204
Array Data Filter by Range of

Values 191
Array Data Filtering by

Comparison 189, 191
Array Statistics Window 195
Assembler and Source

Interleaved dialog box
209

Assembler Only (Symbolic
Addresses) 131

Attached Page Showing
Process and Thread
Status 44

Block Distributed Array on
Three Processes 113

Breakpoint at Assembler
Instruction Dialog Box
208

C++ Type Cast to Base Class
Dialog Box 174

C++ Type Cast to Derived
Class Dialog Box 174

Casting Code 159
Debugging a Distributed

Program with TotalView

3
Debugging a Remote Program

with TotalView 2
Dimmed Process Information

in the Root Window 148
Display of Random Data 261
Displaying a Union 165
Displaying C++ Classes that

Use Inheritance 172
Displaying Long STL Names

157
Diving into Common Block List

in Stack Frame Pane
175

Diving into Local Variables and
Registers 154

Edit > Find Dialog Box 29
Editing argv 170
Editing Cursor 28
Example of Control Groups

and Share Groups 137
File > Exit Dialog Box 31
File > New Program Dialog

Box 36
File > Preferences

Parallel Page 119
File > Preferences Bulk

Launch Page 64
File > Preferences Dialog Box:

Action Points Page 54
File > Preferences Dialog Box:

Bulk Launch Page 55
File > Preferences Dialog Box:

Dynamic Libraries Page
56

File > Preferences Dialog Box:
Fonts Page 57

File > Preferences Dialog Box:
Launch Strings Page 55

File > Preferences Dialog Box:
Options Page 53

File > Preferences Dialog Box:
Parallel Page 56

File > Preferences Launch
Strings Page 249

File > Preferences: Server
Launch Strings Page 62

File > Properties
Action Points Page 210

File > Save Pane Dialog Box
30

File > Signals Dialog Box 47
Fortran 90 Pointer Value 180
Fortran 90 User Defined Type

178
Fortran Array with Inverse

Order and Limited
Extent 186

Fortran Modules Window 176
Global Variables Window 156
Graph Options Dialog Box 259
Group > Attach Subset Dialog

Box 118
Interleaved Source/Assembler

(Absolute Addresses)
131

Laminated Array and Structure
199

Laminated Scalar Variable 197
Manual Launching of

Debugger Server 66
Message Queue Graph 13
Message Queue Graph window

91
Message Queue Window 93
Message Queue Window

Showing Pending
Receive Operation 94

Nested Dive 26
Nested Dives 160
OpenMP Shared Variable 100
OpenMP Stack Parent Token

Line 103
OpenMP THREADPRIVATE

Common Block Variable
102

Process > Startup Parameters
Dialog Box: Arguments
Page 51

Process > Startup Parameters
Dialog Box:
Environment Page 59

Process > Startup Parameters
Dialog Box: Standard
6 TotalView Users Guide Version 5.0

Index
I/O page 52
Process and Thread Labels in

the Process Window 44
Process Window 23
Process Window Tag Field 25
PVM Tasks and Configuration

Window 109
Resolving Ambiguous Function

Names Dialog Box 128
Root Widow: Group Page 137
Root Window Attached Page

20
Root Window Groups Page 21
Root Window Log Page 22
Root Window Showing Process

and Thread Status 72
Root Window Showing Remote

24
Root Window Unattached Page

21
Rotating and Querying 257
Sample Array Visualization 11
Sample Call Tree 12
Sample OpenMP Debugging

Session 99
Sample Visualizer Data

Windows 256
SHMEM Sample Session 111
Slice Displaying the Four

Corners of an Array 186
Sorted Variable Window 194
Spelling Corrector Dialog Box

30
Stop Before Going Parallel

Question Dialog Box
118

Stop Job Question Dialog Box
63

Stopped Execution of
Compiled Expressions
222

Surface Options Dialog Box
262

Thread > Continuation Signal
Dialog Box 42

Three Dimensional Array
Sliced to Two

Dimensions 251
Three Dimensional Surface

Visualizer Data Display
262

Toolbar 133
Toolbar Combinations 133
Tools > Call Tree Dialog Box

126
Tools > Evaluate Dialog Box

233
Tools > Watchpoint Dialog

Box 227
TotalView Debugger Server 10
TotalView Debugging Session

Over a Serial Line 73
TotalView Visualizer

Connection 248
TotalView Visualizer

Relationships 248
TotalView Windows 4
Two Dimensional Surface

Visualizer Data Display
261

Unattached Page 40, 80
Using an Expression to Change

a Value 161
Using Assembler 242
Variable Window 252
Variable Window for a Global

Variable 155
Variable Window for Area of

Memory 158
Variable Window for

small_array 187
Variable Window with Machine

Instructions 158
View > Lookup Function

Dialog Box 127, 129
View > Lookup Variable Dialog

Box 29
Visualizer Graph Data Window

259
Visualizer Windows 255
Waiting to Complete Message

Box 234
Zooming, Rotating, About an

Axis 265

File > Close 27, 158
File > Close command 158
File > Close Relatives 27
File > Close Similar 27, 158
File > Edit Source 127, 132
File > Exit 31
File > Exit Dialog Box figure 31
File > New Program 35, 36, 38,

39, 40, 42, 65, 74
File > New Program Dialog Box

figure 36
File > Preferences 52

Action Points page 48, 53, 120
Bulk Launch page 54, 63, 65
Dynamic Libraries page 54
Fonts page 54
Launch Strings page 54, 62,

132
Options page 47
Parallel page 54, 119

File > Preferences Dialog Box:
Action Points Page figure
54

File > Preferences Dialog Box:
Bulk Launch Page figure
55

File > Preferences Dialog Box:
Dynamic Libraries Page
figure 56

File > Preferences Dialog Box:
Fonts Page figure 57

File > Preferences Dialog Box:
Launch Strings Page
figure 55

File > Preferences Dialog Box:
Options Page figure 53

File > Preferences Dialog Box:
Parallel Page figure 56

File > Preferences Launch Strings
Page figure 249

File > Preferences: Bulk Launch
Page figure 64

File > Preferences: Parallel Page
figure 119

File > Preferences: Server Launch
Strings Page figure 62
Version 5.0 TotalView Users Guide 387

Index

38
File > Properties: Action Points
Page figure 210

File > Save Pane 30
File > Save Pane Dialog Box

figure 30
File > Search Path 37, 40, 48, 50,

87
search order 48

File > Search Path command 48
File > Signals 46
File > Signals Dialog Box figure

47
file for start up 17
–file option to Visualizer 250, 266
files

.pghpfrc 115

.rhosts 85

.stb 279

.stx 279

.Xdefaults 275
hosts.equiv 85
libdbfork.h 319
license.dat 271

fill assembler pseudo op 245
filter expression, matching 188
filtering

array data 188, 193
array expressions 190
by range of values 190
conversion rules 193
example 189
in sorts 194
options 188

filters
$denorm 190
$inf 189
$nan 189
$nanq 189
$nans 189
$ninf 190
$pdenorm 190
$pinf 190

Find Again command 28
Find command 28
finding

functions 127
source code 127, 129

source code for functions 127
-fixed_font_size option 58
float assembler pseudo op 245
floating-point format

SPARC 343
font 278
font X resource 278
fonts, in .Xdefaults file 278
for HP MPI 83
for loop 232
foreground (text) color 278
–foreground option 295
foregroundColor X resource 278
fork() 2, 34, 135, 211, 317

debugging programs that call
34

setting breakpoints with 211
Fortran

array bounds 163
arrays 163
common blocks 174
contained functions 177
data types, displaying 174
debugging modules 177
deferred shape array types 178
file suffixes 16
filter expression 190
identifying version 16
in code fragment 8, 216
in evaluation points 239
module data, displaying 175
modules 175, 177
pointer types 179
type strings supported by

TotalView 162
user defined types 178

Fortran 90 Pointer Value figure
180

Fortran 90 User Defined Type
figure 178

Fortran Array with Inverse Order
and Limited Extent figure
186

Fortran Modules command 176
Fortran Modules Window figure

176
frame pointer 146, 147

function visualization 126
functions

finding 127
returning from 147
searching for 9

G
–g compiler option 15, 26, 34,

116, 274
generating a symbol table 34
global assembler pseudo op 245
global variables

changing 139
displaying 139
diving into 155

Global Variables Window figure
156

–global_types option 295
Globals command 155
globalTypenames X resource 278
Go 22
Go command 82, 86, 88, 89, 121,

134, 138
goal location 141
GOI

process group 141
thread group 141

goto statements 217
Graph Data Window 258
Graph Options Dialog Box figure

259
Graph visualization menu 254
graph window, creating 255
graph*lines.set X resource 285
graph*points.set X resource 285
Graph, in Directory Window 255
graph.width X resource 285
graphs

manipulating, in Visualizer 260
two dimensional 258

gridget 130, 208
group

process 145
thread 145
when stopped 141

Group > Attach Subset Dialog
Box figure 118
8 TotalView Users Guide Version 5.0

Index
Group > Attach Subsets 117
Group > Delete 38, 121, 150
Group > Delete command 96
Group > Go 86, 121, 134, 138
Group > Go command 138
Group > Halt 121, 143
Group > Hold 135
Group > Next 121
Group > Release 135
Group > Reload Symbols 35, 38
Group > Restart 150
Group > Run To 120
Group > Share > Halt 133
Group > Step 121
Group of Interest (GOI) 141
groups 104

see also processes
automatically creating 7
creating 138
examining 135
holding processes 135
releasing processes 135
running 119
single-stepping 6
starting 138
stopping 119

Groups page 20, 137
group-width stepping commands

141

H
h held indicator 134
-h localhost option 83
half assembler pseudo op 245
Halt command 121, 133, 143
halt commands 133
halting

groups 133
processes 133
threads 133

handler routine 45
handling signals 45, 46, 105, 106,

281, 299
held indicator 134
held processes 139

defined 213
help

not available on Linux Alpha
13

Help command 13
hexadecimal address, specifying

in variable window 156
hi16 assembler operator 243
hi32 assembler operator 243
hold and release 134
$hold assembler pseudo op 243
Hold command 135
$hold intrinsic 237
hold state 135
Hold Threads command 135
holding processes 139
holding processes and threads 6
holding threads 145
$holdprocess assembler pseudo

op 243
$holdprocess intrinsic 237
$holdprocessall intrinsic 237
$holdprocessstopall assembler

pseudo op 243
$holdstopall assembler pseudo

op 243
$holdstopall intrinsic 237
$holdthread assembler pseudo

op 244
$holdthread intrinsic 237
$holdthreadstop assembler

pseudo op 244
$holdthreadstop intrinsic 237
$holdthreadstopall assembler

pseudo op 244
$holdthreadstopall intrinsic 237
$holdthreadstopprocess

assembler pseudo op 244
$holdthreadstopprocess intrinsic

237
host machine, defined 10
host ports 304
hostname

abbreviated in root window 22
expansion 308
for tvdsvr 35, 304
in square brackets 22
replacement 308

hosts.equiv file 85

how TotalView determines share
group 138

HPF
applications 111
compiling for debugging 116
debugging 117
display node of array element

279
Dist (distributed) indicator 112
enable debugging at source

level 278
evaluation points restriction

112
MPI not default 115
MPICH 115
Rep (replicated) l 112
search order 114
setting breakpoints 115
starting programs 116
starting TotalView 113
starting with MPICH 117

–hpf option 279, 296
hpf X resource 278
–hpf_node option 296
hpfNode X resource 279
HP-UX

architecture 340
shared libraries 331
swap space 325

hung processes 39

I
I state 45
IBM MPI 84
IBM SP machine 78, 79
–icc option 296
idle state 45
Ignore mode warning 48
–ignore_control_c option 96,

272, 296
ignoring action points 207
indexing, reversed 184
indicator 40
inet interface name 283
inf filter 189
infinite loop, see loop, infinite
infinity count array statistic 195
Version 5.0 TotalView Users Guide 389

Index

39
INFs 188
initialization file 17

typical contents 17
initialization search paths 17
initializing debugging state 17
initializing the CLI 17
input files, setting 51
instructions

data type for 169
displaying 157, 171

int data type 162
int* data type 162
int[] data type 162
Intel-x86

architecture 348
floating-point registers 350
FPCR register 350

using 351
FPSR register 352
general registers 349

interface name for server 283
interleave display mode 129
Interleaved command 129, 149
interleaved source 208
Interleaved Source/Assembler

(Absolute Addresses)
figure 131

interpreted expressions 220
performance 220

intrinsics 234
$clid 234
$count 218, 221, 236
$countall 236
$countthread 236
$duid 234
$hold 237
$holdprocess 237
$holdprocessall 237
$holdstopall 237
$holdthread 237
$holdthreadstop 237
$holdthreadstopall 237
$holdthreadstopprocess 237
$newval 235
$nid 235
$oldval 235
$pid 235

$processduid 235
$stop 221, 237
$stopall 237
$stopprocess 237
$stopthread 237
$systid 235
$tid 235
$value 192
$visualize 238
forcing interpretation 220, 235

inverting array order 185
IP over the switch 85
IRIX

/proc file system 322
linking to dbfork library 319
swap space 327

J
job_t::launch 322

K
K state, unviewable 45
–kcc_classes option 296
kccClasses X resource 279
–KeepSendQueue, option 95
kernel 45
keys, remapping 334
keysym 334
–ksq option 95

L
labels, for machine instructions

172
Laminate > None 197
Laminate > Process 197
Laminate Threads command. 101
Laminated > Thread 197
Laminated Array and Structure

figure 199
Laminated Scalar Variable figure

197
laminated variables 197
laminating data pane 198
lamination

arrays and structures 198
data panes and Visualizer 252
defined 9

diving in pane 198
editing a pane 198
variables 9, 196

launch
configuring Visualizer 249
options for Visualizer 249
TotalView Visualizer from

command line 266
tvdsvr 61, 303

Launch Strings page 62, 132
–lb option 297
lcomm assembler pseudo op 245
LD_LIBRARY_PATH 18
left margin area 25
left mouse button 18
libdbfork.a 317
libdbfork.h file 319
libraries

dbfork 34, 293
debugging SHMEM library

code 110
dynamic 110
libtvhpf.so 114
loading dynamic 114
search order 114
shared 294, 329

libtvhpf.so library 114
license manager problems 272
license.dat file 271
license.dat file, see also TotalView

Installation Guide
limiting array display 186
line most recently selected 147
line numbers 25

boxed 22
linking to dbfork library 317

AIX 318
C++ and dbfork 319
Compaq Tru64 UNIX 317
IRIX 319
SunOS 5 320

Linux swap space 327
lists of processes 20
LM_LICENSE_FILE 18

environment variable 271
lmgrd 271
lo16 assembler operator 243
0 TotalView Users Guide Version 5.0

Index
lo32 assembler operator 243
load and loadbind 331
loading

action points 297
core file 37
file into TotalView 35
new executables 36
remote executables 37

local hosts 35
locations, toggling breakpoints at

205
Log page 22, 59
long variable names, displaying

155
$long_branch assembler pseudo

op 244
Lookup Function command 9, 29,

108, 127, 129, 132
Lookup Variable command 29,

101, 154, 155, 156, 177
specifying slides 186

loop infinite, see infinite loop
lower adjacent array statistic 195
lower bounds 163

non default 164
of array slices 184

lysm TotalView pseudo op 245

M
M state 45
machine instructions

data type 169
data type for 169
displaying 157, 171

main() 108
stopping before entering 107

manipulating data 9
manual hold and release 134
Manual Launching of Debugger

Server figure 66
master process, recreating slave

processes 121
master thread 97

OpenMP 98, 102
stack 100

matching stack frames 197
maxdsiz_64 326

maximum array statistic 195
maximum data segment size 326
mean array statistic 196
median array statistic 196
memory

displaying areas of 156
out of, error 272

memory locations, changing
values of 161

Menu button 19
menus, context 19
message passing deadlocks 92
Message Passing Interface, see

MPI
Message Passing

Interface/Chameleon
Standard, see MPICH

Message Passing Toolkit 92
Message Queue command 90, 92
message queue display 89, 95
Message Queue Graph 12, 90

diving 90
rearranging shape 92
updating 90

Message Queue Graph command
90

Message Queue Graph window
figure 91

Message Queue Window
figure 93

Message Queue Window Showing
Pending Receive
Operation figure 94

message queues 77
message states 90
message tags, reserved 109
–message_queue option 297
message-passing programs 120
messages

envelope information 94
operations 93
reserved tags 109
troubleshooting 269
unexpected 94
verbosity 284

middle mouse button 19
minimum array statistic 196

MIPS
architecture 352
delay slot instructions 357
FCSR register 356

using 357
floating-point registers 355
general registers 353
SR register 354

mixed state 45
–Mkeepftn option 116
mkswap command 327
modify watchpoints, see

watchpoints
modifying code behavior 216
module data definition 175
modules 175, 177

debugging, Fortran 177
displaying Fortran data 175

monitoring TotalView sessions 59
mounting /proc file system 322
mouse button

left 18
menu 19
middle 19
right 19
selecting 18

mouse buttons, using 18
MP_ADAPTOR_USE environment

variable 85
MP_CPU_USE environment

variable 85
MP_EUIDEVELOP environment

variable 94
mpcc_r compilers 92
MPI 77

acquiring processes at start-up
77

attaching to 90
attaching to HP job 84
attaching to running job 83
buffer diving 94
communicators 92
debugging overview 77
library state 92
not as default 115
on Compaq Alpha 82
on HP machines 83
Version 5.0 TotalView Users Guide 391

Index

39
on IBM 84
on SGI 89
process diving 93
processes, starting 88
starting on Compaq 82
starting on SGI 89
starting processes 82, 89
troubleshooting 95

MPI communications library 115
MPI_Init() 87, 92

breakpoints and timeouts 122
MPI_Iprobe() 95
MPI_Recv() 95
MPICH 78, 79

and SIGINT 96
and the TOTALVIEW

environment variable 79
attach from TotalView 80
attaching to 80
ch_lfshmem device 78, 81
ch_mpl device 78
ch_p4 device 78, 81
ch_shmem device 81
ch_smem device 78
configuring 79
copy of 78
Debugging Tips 122
diving into process 80
HPF 115
MPICH/ch_p4 122
mpirun command 79
naming processes 82
obtaining 78
on workstation clusters 117
P4 81
–p4pg files 81
starting TotalView using 79
starting using HPF 117
–tv option 79
using –debug 96

mpirun
for HP MPI 84

mpirun command 79, 84, 89, 117
options to TotalView through

122
passing options to 122

mpirun process 90

MPL_Init() 87
and breakpoints 87

mpxlf_r compiler 92
mpxlf90_r compiler 92
–mqd option 297
MQD, see message queue display
–Mtotalview option 116, 274
–Mtv option 116
multiple classes, resolving 128
multiple outlined routines 97
multiple sessions 103
multiple symbol tables 6
multiprocess programming library

34
multiprocess programs

and signals 47
attaching to 41
compiling 33
process groups 135
setting and clearing

breakpoints 209
multithreaded programs 6
multithreaded signals 148
mutually recursive functions 147

N
–n option, of rsh command 71
–n single process server launch

command 66
named groups 20
names, of processes in process

groups 136
naming MPICH processes 82
naming rules

for control groups 136
for share groups 136

naming the host 304
NaN array statistic 196
nan filter 189
nanq filter 189
NaNs 188, 189
nans filter 189
navigating

source code 132
ndenorm filter 190
nested dive 26, 27
Nested Dive figure 26

nested dive window 160
nested dive, defined 159
Nested Dives figure 160
nested stack frame

running to 146
network debugging 10
New Base Window

in Data Window 256
New Program command 35, 36,

38, 39, 40, 42, 65, 74, 308
Next command 121
Next commands 144
–nicc option 296
$nid intrinsic 235
ninf filter 190
–nlb option 232, 297
–no_ask_on_dlopen option 290,

333
–no_barr_stop_all option 120,

291
–no_compiler_vars option 292
–no_dbfork option 293
–no_dpvm option 106, 294
–no_dump_core option 294
–no_dynamic option 294, 329
–no_global_types option 296
–no_hpf option 116, 279, 296
–no_ignore_control_c option 296
–no_kcc_classes option 296
–no_message_queue option 297
–no_mqd option 297
–no_parallel option 297
–no_pop_at_breakpoint option

298
–no_pop_on_error option 298
–no_pvm option 105, 106, 298
–no_stop_all option 79, 120, 122,

300
–no_user_threads option 300
node ID 235
node, attaching from to poe 87
nodes, HPF 279
None (laminate) command 197
None (sort) command 194
–nsb option 299
2 TotalView Users Guide Version 5.0

Index
O
–O option 34
offset of window locations 278
offsets, for machine instructions

172
$oldval intrinsic variable 235
omitting array stride 185
opaque type definitions 171
Open process window at

breakpoint checkbox 48
Open process window on signal

checkbox 47
OpenMP 96, 97

debugging 97
debugging applications 96
master thread 97, 98, 101, 102
master thread stack context

100
on Compaq 98
private variables 98
runtime library 97
shared variables 98, 102
stack parent token 102
THREADPRIVATE common

blocks 101
THREADPRIVATE variables 102
threads 98
viewing shared variables 101
worker threads 97

OpenMP Shared Variable figure
100

OpenMP Stack Parent Token Line
figure 103

OpenMP THREADPRIVATE
Common Block Variable
figure 102

operating systems 321
operating systems supported 321
optimizations, compiling for 34
options

for visualize 266
–ignore_control_c 272
in Data Window 256
–Mtotalview 274
–no_stop_all 79
–patch_area 223
–patch_area_length 223

–sb 232
-serial 73, 74
setting 54
surface data display 263
tvdsvr

–callback 304
–serial 304
–server 304
–set_pw 304

–user_threads 300
org assembler pseudo op 245
ORNL PVM, see PVM
Out commands 146
outliers 195, 196
outlined routine 97, 101, 102
outlining, defined 97
output files, setting 51

P
p4 listener process 81
–p4pg files 81
–p4pg option 81
panes

action points list, see action
points list pane

source code, see source code
pane

stack frame, see stack frame
pane

stack trace, see stack trace
pane

width 283
parallel debugging tips 117
PARALLEL DO outlined routine

98
Parallel Environment for AIX, see

PE
–parallel option 297
Parallel page 119
parallel program, restarting 121
parallel region 97
parallel tasks, starting 86
Parallel Virtual Machine, see PVM
passing arguments 35
passing environment variables to

processes 58
password checking 306

passwords 306, 307
generated by tvdsvr 304

Paste command 28
pasting between windows 28
pasting with middle mouse 19
patch space

static 223
patch space size, different than

1MB 223
patch space, allocating 221
–patch_area_base option 223,

298
–patch_area_length option 223,

298
patchAreaAddress X resource

280
patchAreaLength X resource 280
patching

function calls 219
programs 218

PATH environment variable 37,
40, 49

for tvdsvr 303
pathname expansion 138
pathnames, setting in procgroup

file 81
PC icon 149
pdenorm filter 190
PE 84, 87, 92

adaptor_use option 85
and slow processes 123
applications 84
cpu_use option 85
from command line 86
from poe 86
options to use 85
switch-based communication

85
PE Debugging Tips 122
pending messages 91
pending receive operations 93,

94
pending send operations 93, 95

configuring for 95
pending unexpected messages 93
performance of interpreted, and

compiled expressions 220
Version 5.0 TotalView Users Guide 393

Index

39
performance of remote
debugging 61

–persist option to Visualizer 250,
266

pghpf command 116
.pghpfrc file 115
PGI HPF applications, see HPF

applications
$pid intrinsic 235
pid.tid to identify thread 24
pinf filter 190
pipe for Visualizer 248
piping data 30
platforms 321
poe 117

and mpirun 79
and TotalView 86
arguments 85
attaching to 87, 88
command 114
interacting with 123
on IBM SP 80
placing on process list 88
required options to 85
running PE 86
TotalView acquires poe

processes 87
point of execution for

multiprocess or
multithreaded program
25

pointer data 27
pointers 27

diving on 27
in Fortran 179
to arrays 163
value of 179

–pop_at_breakpoint option 298
–pop_on_error option 298
-popAtBreakpoint option 48
popAtBreakpoint X resource 280
poping a window 27
poping process window. 37
-popOnError option 47
popOnError X resource 281
port 4142 65, 306
port number 305

for tvdsvr 35, 304
replacement 308
searching 305

–port option 65, 305
ports on host 304
PowerPC

architecture 344
floating-point registers 346
FPSCR register 346

using the 348
FPSCR register, using 348
general registers 344
MSR register 345

predefined data types 166
Preference

Action Points page 48
Preferences

Action Points page 53
Bulk Launch page 54, 63, 65
Dynamic Libraries page 54
Fonts page 54
Launch Strings page 54, 62
Options page 47
Parallel page 54

preferences
overriding 57
set using CLI 57
setting 54

Preferences command 52
preprocessors 295
primary thread

stepping failure 142
private data for threads 6
private execution context 6
private execution stack 6
private variables 97

in OpenMP 98
proc file system problems 322
procedures

debugging over a serial line 72
displaying 170
displaying declared and

allocated arrays 170
process

detaching 42
holding 145
releasing 135

state 43
synchronization 145

Process > Detach 38, 42
Process > Go 22, 82, 86, 88, 89,

121, 134, 138, 139
Process > Go command 83, 88,

89, 139
Process > Halt 121, 133, 143
Process > Hold 135
Process > Hold Threads 135
Process > Release Threads 135
Process > Startup Parameters 51,

52
Arguments page 51
Environment page 58
Standard I/O page 52

Process > Startup Parameters
Dialog Box: Arguments
Page figure 51

Process > Startup Parameters
Dialog Box: Environment
Page figure 59

Process > Startup Parameters
Dialog Box: Standard I/O
Page figure 52

Process and Thread Labels in the
Process Window figure 44

process as dimension in
Visualizer 252

process barrier breakpoint
changes when clearing 215
changes when setting 215
defined 202
deleting 215
setting 213

Process command 197
process DUID 235
process group 5, 145

behavior at goal 145
displaying 137
when stopped 141

process ID 235
process state 25
process states, attached 44
process window 5, 22

displaying 26
host name in title 22
4 TotalView Users Guide Version 5.0

Index
program counter 25
raising 47
updating 38

Process Window figure 23
Process Window Tag Field Area

figure 25
process’s rank 90
$processduid intrinsic 235
processes

see also automatic process
acquisition

see also groups
acquiring 80, 81, 107
acquiring in PVM applications

104
acquisition in poe 87
apparently hung 121
attaching 20, 38, 39
attaching to 39, 87, 108
automatic acquisition 7
barrier point behavior 215
breakpoints shared 209
cleanup 110
controlling 7
copy breakpoints from master

process 80
creating 50, 138, 139
creating by single-stepping

139
creating without starting 139
definition 7
deleting 150
deleting related 150
detaching from 41
dimmed, in the root window

147
displaying data 26
diving into 40, 87
diving on 26
error creating 270
groups 135

changing 138
examining 137

held 139
held defined 213
holding 6, 134, 212, 237
hung 39

killing duplicates 38
list of 20
loading new executables 36
local 39
master restart 121
MPI 93
names 136
passing environment variables

to 58
refreshing process info 134
released 213
releasing 134, 212, 215
remote 39
restarting 150
single-stepping 6, 140, 141
slave, breakpoints in 80
starting 22, 139
state 43
states 44
status of 43
stop all related 209
stopped 213
stopped at barrier point 215
stopping 133, 216
stopping all related 47
stopping and deleting 217
stopping intrinsic 237
stopping spawned 80
synchronizing 6
types of process groups 135

procgroup file 81
using same absolute path

names 81
program control groups

changing 138
naming 136

program counter 25, 40
program counter (PC) 40

arrow icon for PC 25
indicator 25
setting 149
setting program counter 149
setting to a stopped thread

149
program visualization 126
programs

compiling 33

compiling using –g 15
correcting 219
deleting 150
not compiled with –g 16
patching 218
reloading 35
restarting 150
setuid, debugging 272

Properties command 123, 202,
205, 209, 213, 217, 249

prototypes for temp files 64
prun command 88
pthreads, see threads
PVM 305

acquiring processes 104
attaching procedure 108
attaching to tasks 108
automatic process acquisition

107
cleanup of tvdsvr 110
creating symbolic link to

tvdsvr 104
daemons 109
debugging 103
debugging dynamic libraries

110
disabling support for 105
dynamic libraries 110
enabling support 277, 281
enabling support for 105
message tags 109
multiple instances not allowed

by single user 103
multiple sessions 103
running with DPVM 104
same architecture 108
search path 105
starting actions 107
tasker 107
tasker event 107
tasks 103, 104
TotalView as tasker 103
TotalView limitations 103
tvdsvr 107
Update Command 108

pvm command 104, 106
Version 5.0 TotalView Users Guide 395

Index

39
PVM groups, unrelated to process
groups 104

–pvm option 105, 106, 298, 305
PVM Tasks and Configuration

Window figure 109
PVM Tasks command 108
pvm_joingroup() 110
pvm_spawn() 104, 107
pvmDebugging X resource 281
pvmgs process 104, 110

terminated 110
pxdb command 331
pxdb64 command 331

Q
QSW RMS applications 88

attaching to 89
debugging 88
starting 88

quad assembler pseudo op 245
Quadrics 88
quartiles array statistic 196
queue state 90
quitting TotalView 31

R
–r option 299
R state 45
raising process window 47
rank for Visualizer 250
ranks 90
recompiled executable, reloading

38
recompiling 38
recursive functions 147

single-stepping 146
redirecting

stdin 52
stdout 52

registers
Alpha FPCR 339
editing 151
floating-point

Alpha 338
Intel-x86 350
MIPS 355
PowerPC 346

SPARC 360
general

Alpha 338
Intel-x86 349
MIPS 353
PowerPC 344
SPARC 359

Intel-x86 FPCR 350
using the 351

Intel-x86 FPSR 352
interpreting 151
MIPS FCSR 356

using the 357
MIPS SR 354
Power FPSCR 346
Power MSR 345
PowerPC FPSCR 346

using 348
PowerPC FPSCR,

using 348
PowerPC MSR 345
SPARC FPSR 361
SPARC FPSR, using 362
SPARC PSR 359

relatives, attaching to 41
Release command 135
release state 135
Release Threads command 135
releasing a process 135
Reload Symbols command 35, 38
reloading a recompiled

executable 38
reloading breakpoints 86
reloading executables 38
reloading programs 35
remapping keys 334
Remote Debug Server Launch

preferences 62
remote debugging 61

see also PVM applications
definition 10
launching tvdsvr 61
tvdsvr command syntax 303

remote executables
loading 37

remote host
connecting to 38

debugging on 37
remote hosts 35
remote login 85
–remote option 35, 38, 298
remote shell command, changing

70
removing breakpoints 19
remsh command 70, 308
remsh command, used in server

launches 66
Repl (replicated) indicator 112
replacement characters 307
replacing contents of variable

window 160
reserved message tags 109
Reset command 127, 132
Reset View command 263
resetting the program counter

149
Resolving Ambiguous Function

Names Dialog Box figure
128

resolving ambiguous names 128
resolving multiple classes 128
resolving multiple static functions

128
resources, for .Xdefaults file 275
Restart Checkpoint command

151
Restart command 150
restarting parallel programs 121
restarting programs 150
resuming

executing thread 149
execution 139
processes with a signal 148

retracing addresses 276
returning to original contents 127
reusing windows 27
reversed indexing 184
right angle bracket (>) 26
right arrow is program counter 40
right mouse button 19
RMS applications 88

attaching to 89
starting 88

root window 3, 19, 20
6 TotalView Users Guide Version 5.0

Index
attached page 20, 88, 137,
147, 148

dimmed information 147
Groups page 137
groups page 20, 137
Log page 22, 59
selecting a process 26
state indicator 43
unattached page 20, 38, 39,

43, 45, 80, 87
Root Window Attached Page

figure 20
Root Window Groups Page figure

21
Root Window Log Page figure 22
Root Window Showing Process

and Thread Status figure
72

Root Window Showing Remote
figure 24

Root Window Unattached Page
figure 21

Root Window: Group Page figure
137

Rotating and Querying figure 257
rotating surface 263
rounding modes 151
routine visualization 126
routines, diving on 26
routines, selecting 25
RPM runtime library 113, 116
rsh command 70, 85
Run To command 120
Run To commands 145
running groups 119
running state 45
runtime libraries

RPM 113, 116
SMP 113, 116

S
S state 45
-s switch to CLI 17
Sample Array Visualization figure

11
Sample Call Tree figure 12

Sample Message Queue Graph
figure 13

Sample OpenMP Debugging
Session figure 99

Sample Visualizer Data Windows
figure 256

Save All (action points) command
232

Save All command 232
Save Pane command 30
saving

action points 232, 299
window contents 30

–sb option 232, 299
scaling a surface 264
scaling data window 260
scrolling 18

undoing 132
search order, HPF 114
Search Path command 37, 40, 48,

50, 87
search order 48

search paths
in .Xdefaults file 281
order 48
setting 48, 105

search paths for initialization 17
–search_port option 65, 305
searchCaseSensitive X resource

281
searching 28

for functions 9
for source code 129
locating closest match 29
source code 127

Searching, see Edit > Find, View
> Lookup Function, View
Lookup Variable

searching, variable not found 29
searchPath X resource 281
select button 18
selected line, running to 146
selecting

different stack frame 25
routines 25
source code, by line 149
source line 142

selecting text 28
sending signals to program 48
serial line

baud rate 73
debugging over a 72
radio button 74
starting TotalView 74

serial line connection 306
-serial option 73, 74
–serial option 299, 303, 306
server launch 62

command 62
enabling 62
replacement character 66

server launch command 308
-server option

not secure 65
–server option 65, 303, 306
servers, number of 308
Set Barrier command 213
Set PC command 150
Set Search Directory command

273, 274, 281
Set Signal Handling Mode

command 105
–set_pw option 304, 306
–set_pw single process server

launch command 67
–set_pws bulk server launch

command 68
–set_pws option 307
setting

barrier breakpoint 213
breakpoints 19, 86, 203, 209
breakpoints while running 203
command arguments 51
command line arguments 50,

51
environment variables 58
evaluation points 19, 217
HPF defaults 115
input and output files 51
search path 48
search paths 48, 105, 281
thread specific breakpoints

235
setting options 54
Version 5.0 TotalView Users Guide 397

Index

39
setting preferences 54
setting up, debug session 33, 61,

77
setting X resources 54
setuid programs 272
shape arrays, deferred types 178
Share > Halt 133
share group 135, 147, 215

determining 138
determining members of 138
discussion 136
naming 136

shared address space 6
shared libraries 294, 329

HP-UX 331
shared memory library code, see

SHMEM library code
debugging

shared variables 97
in OpenMP 100
OpenMP 98, 102
procedure for displaying 100

sharing action points 211
sharing breakpoints 5
SHLIB_PATH 18
–shm option 299
SHMEM library code debugging

110
SHMEM Sample Session figure

111
showing areas of memory 156
SIGALRM 123
SIGINT signal 96
signal

clearing 149
signal handling mode 46
signal list 48
signal that caused core dump 43
–signal_handling_mode option

299
-signalHandlingMode option 46
–signal_handling_mode option

299
signalHandlingMode X resource

281
signals

affected by hardware registers

46
continuing execution with 148
default handling behavior 46
defining how handled 8
discarding 48
handler routine 45
handling 45
handling in PVM applications

105, 106
handling in TotalView 45, 281,

299
handling mode 46
resending 48
SIGALRM 123
SIGTERM 105, 106
stopping 48

Signals command 46
SIGSTOP

used by TotalView 46
when detaching 42

SIGTERM signal 105, 106
stops process 105
terminates threads on SGI 98

SIGTRAP, used by TotalView 46
single process server launch 61,

62
single process server launch

command
%C 66
%D 67
%L 67
%P 67
%R 66
%verbosity 67
–callback_option 67
-n 66
–set_pw 67
–working_directory 67

single-stepping 8, 140, 143
commands 143
groups 6
group-width 141
in a nested stack frame 146
into function calls 144
not allowed for a parallel

region 97
on primary thread only 140

operating system
dependencies 146, 149

over function calls 144
process-width 141
recursive functions 146
slow performance 273
threads 142
to a selected line 144

skipping elements 185
sleeping state 45
Slice Displaying the Four Corners

of an Array figure 186
slices

defining 184
descriptions 187
displaying one element 187
examples 184, 185
in sorts 194
lower bound 184
multidimensional 185
of arrays 183
operations using 179
reversing indexing 184
stride elements 184
upper bound 184
with the variable command

186
SMP machines 78
SMP runtime library 113, 116
sockets 72
Sort > Ascending 193
Sort > Descending 194
Sort > None 194
Sorted Variable Window figure

194
sorting

array data 193
array elements 188

Source As > Assembler 129
Source As > Interleaved 129, 149
Source As > Source 129
source being interleaved 208
source code

examining 129
finding 127, 129
navigating 132

source code pane 25, 273, 283
8 TotalView Users Guide Version 5.0

Index
Source command 129
source file suffixes 16
source lines

ambiguous 143
editing 132
searching 142
selecting 142

source pane 22, 25
source statements as comments

208
source-level breakpoints 203
sourcePaneTabWidth X resource

283
space allocation

dynamic 222
static 222, 223

SPARC
architecture 358
floating-point format 343
floating-point registers 360
FPSR register 361

using 362
general registers 359
PSR register 359

spawned processes, stopping 80
specifying search directories 50
spell checker 29
spellCorrection X resource 283
spelling checker 283
Spelling Corrector Dialog Box

figure 30
stack

master thread 100
trace, examining 153
unwinding 150

stack context of the OpenMP
master thread 100

stack frame
current 132
examining 153
matching 197
pane 25
selecting different 25

Stack Frame Pane 158
stack panes 25
stack parent token 102

diving 102

stack trace pane 25
displaying source 27

standard deviation array statistic
196

Standard I/O page 52
standard input, and launching

tvdsvr 71
start(), stopping within 108
start_pes() 110
starting

CLI 16
groups 138
parallel tasks 86
processes 22
TotalView 16, 34, 42, 86
TotalView for HPF 113
tvdsvr 35, 61, 65, 107

start-up file 17
Startup Parameters

Environment page 58
Startup Parameters command 51,

52
Arguments page 51
Standard I/O page 52

start-up, acquiring processes 77
state

and status 43
of processes and threads 43
unattached process 45

state characters 45
state, initializing 17
static constructor code 139
static functions, resolving

multiple 128
static patch space allocation 222,

223
static patch space assembler

code 223
statically linked, stopping in

start() 108
statistics for arrays 194
status

and state 43
of processes 43
of threads 43

status registers
examining 151

interpreting 151
stdin, redirect to file 51
stdout, redirect to file 51
Step command 121
Step commands 144
stepping

see also single-stepping
apparently hung 121
into 144
over 144
primary thread can fail 142
Run (to selection) Group

command 120
threads 142

stepping commands 139
STL variables, displaying 155
$stop assembler pseudo op 244
Stop Before Going Parallel

Question Dialog Box
figure 118

Stop control group on error
checkbox 48

STOP icon 19, 203, 208
for breakpoints 19, 203

$stop intrinsic 237
Stop Job Question Dialog Box

figure 63
–stop_all option 299
$stopall intrinsic 237
Stopped Execution of Compiled

Expressions figure 222
stopped process 215
stopped state 45

unattached process 45
stopping

all related processes 47
groups 119
processes 133, 217
spawned processes 80
threads 133

$stopprocess assembler pseudo
op 244

$stopprocess intrinsic 237
$stopthread intrinsic 237
stride

default value of 185
elements 184
Version 5.0 TotalView Users Guide 399

Index

40
in array slices 184
omitting 185

string assembler pseudo op 245
<string> data type 168
string syntax 277
strings, searching for by case 281
structs

see also structures
defined using typedefs 165
how displayed 164

structures 164
see also structs
editing types 162
laminating 198

subroutines, displaying 26
suffixes

of processes in process groups
136

of source files 16
sum array statistic 196
SunOS 5

/proc file system 322
key remapping 334
linking to dbfork library 320
swap space 328

supported platforms 321
Suppress All command 207
suppressing action points 207
surface

display 263
in directory window 255
rotating 263
scaling 264
translating 264
zooming 264

Surface Data Window 260
display 262

Surface Options Dialog Box figure
262

Surface visualization window 254
surface window, creating 255
surface*auto_reduce.set X

resource 286
surface*contour.set X resource

286
surface*mesh.set X resource 286
surface*shade.set X resource 286

surface*xrt3dViewNormalized X
resource 286

surface*xrt3dXMeshFilter X
resource 287

surface*xrt3dYMeshFilter X
resource 287

surface*xrt3dZoneMethod X
resource 286

surface*zone.set X resource 287
surface.height X resource 286
surface.width X resource 286
suspended windows 234
swap command 328
swap space 272, 323, 328

AIX 326
Compaq Tru64 324
HP-UX 325
IRIX 327
Linux 327
SunOS 328

swapon command 327
switch-based communication

for PE 85
switch-based communications 85
symbol table 6
symbol table debugging

information 15
symbolic addresses, displaying

assembler as 130
Symbolically command 130
synchronizing processes 6, 145
systems supported 321
systid 24
$systid intrinsic 235

T
T state 45
tab character 283
tag field 203, 208
tag field area 19, 25
target machine, defined 10
tasker event 107
tasks

attaching to 108
diving into 108
PVM 103
starting 86

TCP/IP sockets 72
temp file prototypes 64
templates, ambiguous lines 204
testing when a value changes 225
text

editing 28
locating closest match 29
saving window contents 30
selecting 28

text assembler pseudo op 245
third party visualizer 248
Thread > Continuation Signal 42,

148
Thread > Continuation Signal

Dialog Box figure 42
Thread > Go command 139
Thread > Hold 135
Thread > Set PC 150
thread as dimension in Visualizer

252
Thread command 197
thread group 145

behavior at goal 145
when stopped 141

thread ID 24
system 235
TotalView 235

thread local storage 101
variables stored in different

locations 101
thread objects

displaying 181
Thread Objects command 181
thread of interest 133
Thread of Interest (TOI) 141
thread pane 24
THREADPRIVATE common block

procedure for viewing
variables in 101

THREADPRIVATE variables 102
threads 6

controlling 7
definition 7
differing operating system

definition 6
dimmed, in the root window

147
0 TotalView Users Guide Version 5.0

Index
displaying source 26
diving 25
diving on 26
finding window for 25
holding 6, 145
ID format 24
listing 24
opening window for 25
private data 6
releasing 212
resuming executing 149
setting breakpoints in 235
single-stepping 140, 142
stack trace 25
state 43
states 44
status of 43
stopping 133
synchronizing 6
systid 24
tid 24
TotalView’s model 7
user-level 283

Threads > Set PC command 150
thread-specific breakpoints 235
thread-width stepping command

142
Three Dimensional Array Sliced to

Two Dimensions figure
251

Three Dimensional Surface
Visualizer Data Display
figure 262

tid 24
$tid intrinsic 235
timeouts

avoid unwanted 122
during initialization 87
for connection 62
TotalView setting 85

Toggle Node Display 279
TOI 133
Toolbar combinations figure 133
Toolbar figure 133
toolbar, using 133
Tools > Call Tree 126

Tools > Call Tree Dialog Box
figure 126

Tools > Command Line 17
Tools > Create Checkpoint 151
Tools > Evaluate 232, 233, 234,

249
Tools > Evaluate command 233
Tools > Evaluate Dialog Box

figure 233
Tools > Fortran Modules 176
Tools > Globals 155
Tools > Message Queue 90, 92
Tools > Message Queue

command 92
Tools > Message Queue Graph

90
Tools > PVM Tasks 108
Tools > Restart Checkpoint 151
Tools > Statistics command 194
Tools > Thread Objects 181
Tools > Visualize 200
Tools > Watchpoint 226, 230
Tools > Watchpoint Dialog Box

figure 227
TotalView

and MPICH 79
as PVM tasker 103
core files 35
host machine definition 10
HPF default settings 115
interactions with Visualizer 247
quitting 31
starting 16, 34, 35, 42, 86
starting on remote hosts 35
target machine definition 10
thread model 7
Visualizer configuration 249
visualizing array data 11

TotalView Assembler Language
241

TotalView assembler operators
hi16 243
hi32 243
lo16 243
lo32 243

TotalView assembler pseudo ops
$debug 243

$hold 243
$holdprocess 243
$holdprocessstopall 243
$holdstopall 243
$holdthread 244
$holdthreadstop 244
$holdthreadstopall 244
$holdthreadstopprocess 244
$long_branch 244
$stop 244
$stopall 244
$stopprocess 244
$stopthread 244
align 244
ascii 244
asciz 244
bss 244
byte 244
comm 244
data 244
def 244
double 244
equiv 244
fill 245
float 245
global 245
half 245
lcomm 245
lysm 245
org 245
quad 245
string 245
text 245
word 245
zero 245

totalview command 16, 17, 35,
42, 82, 86, 89, 289

–a option 51
command-line options 275
description 289
for HP MPI 83
options 290
starting on a serial line 74
synopsis 289

TotalView data types
<address> 166
<char> 166
Version 5.0 TotalView Users Guide 401

Index

40
<character> 166
<code> 166, 169
<complex*16> 166
<complex*8> 166
<complex> 166
<double precision> 167
<double> 166
<extended> 167
<float> 167
<int> 167
<integer*1> 167
<integer*2> 167
<integer*4> 167
<integer*8> 167
<integer> 167
<logical*1> 167
<logical*2> 167
<logical*4> 167
<logical*8> 167
<logical> 167
<long long> 167
<long> 167
<real* 16> 167
<real* 4> 167
<real* 8> 167
<real> 167
<short> 167
<string> 168
<void> 168

TotalView Debugger Server 37, 73
TotalView Debugger Server, figure

10
TotalView Debugger Server, see

tvdsvr
TotalView Debugging Session

Over a Serial Line figure
73

TOTALVIEW environment variable
79

TotalView platforms 321
TotalView program

quitting 31
TotalView Visualizer 254–267
TotalView Visualizer Connection

figure 248
TotalView Visualizer Relationships

figure 248

TotalView Visualizer
see Visualizer

TotalView Windows 4
TotalView windows

action point List pane 25
editing cursor 28
process 22
program counter arrow 25

totalview*autoRetraceAddresses
X resource 276

totalview*backgroundColor X
resource 276

totalview*compileExpressions X
resource 277

totalview*compilerVars X
resource 276

totalview*cTypeStrings X
resource 277

totalview*displayAssembler
Symbolically X resource
277

totalview*DPVMDebugging X
resource 277

totalview*font X resource 278
totalview*foregroundColor X

resource 278
totalview*globalTypenames X

resource 278
totalview*hpf X resource 116,

278
totalview*hpfNode X resource

279
totalview*kccClasses X resource

279
totalview*overrideRedirect X

resource 280
totalview*patchAreaAddress X

resource 280
totalview*patchAreaLength X

resource 280
totalview*popAtBreakpoint X

resource 280
totalview*popOnError X resource

281
totalview*pvmDebugging X

resource 281

totalview*searchCaseSensitive X
resource 281

totalview*searchPath X resource
281

totalview*signalHandlingMode X
resource 281

totalview*sourcePaneTabWidth X
resource 283

totalview*spellCorrection X
resource 283

totalview*useInterface X resource
283

totalview*userThreads X resource
283

totalview*useTransientFor X
resource 284

totalview*verbosity X resource
284

totalviewcli command 16, 17, 35
transient-for windows 284
translating a surface 264
translating data window 260
TRAP_FPE environment variable

on SGI 46
troubleshooting xvi, 269

checkout failed 271
error creating new process 270
error launching process 270
error while deleting target 270
HPF source code does not

appear 274
MPI 95
out of memory 272
single-stepping is slow 273
source code doesn’t appear

273
tvdsvr fails to appear 274
X resources are not recognized

274
–tv option 79
TVD.breakpoints file 232
TVDB_patch_base_address

object 223
tvdb_patch_space.s 224
tvdsvr 35, 37, 58, 61, 62, 63, 72,

220, 304, 307
attaching to 108
2 TotalView Users Guide Version 5.0

Index
cleanup by PVM 110
editing command line for poe

87
fail in MPI environment 96
fails to appear 274
launching 66
launching, arguments 71
PATH environment variable

303
starting 65
starting for serial line 73
starting manually 65
symbolic link from PVM

directory 104
with PVM 107

tvdsvr command 303
description 303
options 304
password 304
starting 61
synopsis 303
timeout while launching 63, 64
use with DPVM applications

305
use with PVM applications

104, 305
tvdsvr.conf 306
TVDSVRLAUNCHCMD

environment variable 66,
308

Two Dimensional Surface
Visualizer Data Display
figure 261

two-dimensional graphs 258
type casting 161

examples 169
type names 278
type strings

built-in 166
editing 161
for opaque types 171
parameter in .Xdefaults file

277
supported for Fortran 162

type, user defined type 178
typedefs

defining structs 165

how displayed 164
types supported for C language

162

U
UDT 178
UDWP, see watchpoints
UID, UNIX 65
unattached page 20, 38, 39, 43,

45, 80, 87
Unattached Page figure 40, 80
unattached process states 45

summary 45
undive icon 127
undiving, from windows 160
unexpected messages 91, 94
unions 164

how displayed 165
unsuppressing action points 207
unwinding the stack 150
Update command 88, 134, 147
updating visualization displays

252
upper adjacent array statistic 196
upper bounds 163

of array slices 184
USEd information 177
useInterface X resource 283
user defined data type 174, 178
–user_threads option 300
userThreads X resource 283
user-visible communicators 92
useTransientFor X resource 284
Using an Expression to Change a

Value figure 161
Using Assembler figure 242
using expressions 8

V
value field 233
values, changing 28
variable

diving 27
variable window 5

closing 158
displaying 153
duplicating 161

in recursion, manually refocus
154

laminated display 196
replacing contents 160
stale in pane header 154
tracking addresses 154
updates to 154

Variable Window figure 252
Variable Window for a Global

Variable figure 155
Variable Window for Area of

Memory figure 158
Variable Window for small_array

figure 187
Variable Window with Machine

Instructions figure 158
variables

at different addresses 198
changing the value 161
changing values of 9, 161
displaying all globals 155
displaying contents 27
displaying long names 155
diving 27
in modules 176
intrinsic, see intrinsic variables
laminated display 196
laminating 9
stored in different locations

101
–verbosity bulk server launch

command 68
verbosity level 90
–verbosity option 300, 307
verbosity setting replacement

character 309
–verbosity single process server

launch command 67
verbosity X resource 284
View > Assembler > By Address

130
View > Assembler > Symbolically

130
View > Dive 9
View > Dive Anew 27
View > Dive Thread 181
View > Dive Thread New 181
Version 5.0 TotalView Users Guide 403

Index

40
View > Laminate > None 197
View > Laminate > Process 197
View > Laminate Threads 101
View > Laminated > Thread 197
View > Lookup Function 9, 29,

108, 127, 129, 132
View > Lookup Function Dialog

Box figure 127, 129
View > Lookup Variable 29, 101,

154, 155, 156
specifying slices 186

View > Lookup Variable
command 155, 177

View > Lookup Variable Dialog
Box figure 29

View > Reset 127, 132
View > Sort > Ascending 193
View > Sort > Descending 194
View > Sort > None 194
View > Source As > Assembler

129
View > Source As > Interleaved

129, 149
View > Source As > Interleaved

command 149
View > Source As > Source 129
View > Variable command 100
visualization 11

deleting a dataset 254
display data 247
extract data 247
translating a surface 264
zooming a surface 264

$visualize 238, 252–254
Visualize command 200, 250,

251, 266
visualize command 266
$visualize EVAL 112
visualize intrinsic 252
Visualize* data*pick_message.

background X resource
285

Visualize*directory*
auto_visualize. set X
resource 285

Visualize*directory.width X
resource 285

Visualize*graph*lines.set X
resource 285

Visualize*graph*points.set X
resource 285

Visualize*graph.width X resource
285

Visualize*surface*auto_reduce.
set X resource 286

Visualize*surface*contour.set X
resource 286

Visualize*surface*mesh.set X
resource 286

Visualize*surface*shade.set X
resource 286

Visualize*surface*xrt3dView
Normalized X resource
286

Visualize*surface*xrt3dXMesh
Filter X resource 287

Visualize*surface*xrt3dYMesh
Filter X resource 287

Visualize*surface*xrt3dZone
Method X resource 286

Visualize*surface*zone.set X
resource 287

Visualize*surface.height X
resource 286

Visualize*surface.width X
resource 286

Visualizer 11, 199
auto launch options, changing

250
choosing method for

displaying data 257
configuring 249
configuring launch 249
creating graph window 255
creating surface window 255
data sets to visualize 251
data types 250
data window 254, 255
data window manipulation

commands 260
dataset defined 250
dataset numeric identifier 250
dataset parameters 263
deleting datasets 254

dimensions 252
directory window 254
disabling 249
display not automatically

updated 252
exiting from 254
–file option 250, 266
graphs, display 258
graphs, manipulating 260
how implemented 247
interactions with TotalView

247
laminated data panes 252
launch command, changing

shell 250
launch from command line

266
launch options 249
method 257
method automatically chosen

258
new or existing dataset 250
number of arrays 251
–persist option 250, 266
pipe 248
rank 250
relationship to TotalView 248
rotating 263
scaling a surface 264
selecting datasets 254
shell launch command 250
slices 251
surface data display options

263
Surface Data Window 260
third party 248
using casts 253
windows, types of 254

visualizer
closing connection to 250
customized command for 249

Visualizer Graph Data Window
figure 259

Visualizer Windows figure 255
visualizing

data 247
data sets from a file 266
4 TotalView Users Guide Version 5.0

Index
from variable window 251
in expressions using $visualize

252
visualizing data 254
<void> data type 168

W
W state 45
Waiting to Complete Message

Box figure 234
watching memory 228
Watchpoint command 226, 230
Watchpoint Properties dialog box

227
watchpoint state 45
watchpoints 224

$newval 230
$oldval 230
alignment 231
conditional 225, 230
copying data 229
creating 226
defined 8, 202
disabling 227
diving into 227
enabling 227
evaluated, not compiled 231
evaluating an expression 225
example of triggering when

value goes negative
230, 231

length compared to $oldval or
$newval 231

lists of 25

lowest address triggered 229
modifying a memory location

225
monitoring adjacent locations

229
multiple 229
not saved 232
PC position 228
problem with stack variables

228
supported platforms 225
testing a threshold 225
testing when a value changes

225
triggering 225, 228
watching memory 228

Window > Duplicate 27, 161
Window > Duplicate Base 27, 160
Window > Update 88, 134, 147
window contents, saving 30
window location 276

offset 278
windows 158

closing 158
copying between 28
data 255
Data Window 256
Directory Window 254
event log 59
graph data 258
pasting between 28
poping 27
problems with 274
Surface Data Window 260

suspended 234
transient-for 284

Windows > Update (PVM) 108
word assembler pseudo op 245
worker threads 97
workers group 145
working directory 50
–working_directory bulk server

launch command 68
–working_directory option 307
–working_directory single process

server launch command
67

X
X resource option 290
X resources setting 54
Xdefaults 275
xrdb command 274, 275
–Xresource=value option 290
xterm

launching tvdsvr from 71
problems with 272

Z
Z state 45
zero assembler pseudo op 245
zero count array statistic 196
zombie state 45
zone maps 260
zooming a surface 264
zooming data window 260
Zooming, Rotating, About an Axis

figure 265
Version 5.0 TotalView Users Guide 405

Index

40
6 TotalView Users Guide Version 5.0

	About This Book
	Supported Platforms
	Reporting Problems
	Conventions

	TotalView Features
	TotalView Advantages
	TotalView Windows
	Understanding Multiprocess Programs
	Understanding Multithreaded Programs
	Controlling Processes and Threads
	Using Action Points
	Examining and Manipulating Data
	Distributed Debugging
	Visualization
	Context-Sensitive Help and Documentation

	TotalView Basics
	Compiling Programs
	Starting TotalView
	Initializing the Debugger

	Using the Mouse Buttons
	Using the Root Window
	The Process Window
	Starting a Process

	Diving into Objects
	Editing Text
	Searching for Text
	Searching for Functions and Variables
	Saving the Contents of Windows
	Exiting from TotalView

	Setting Up a Debugging Session
	Compiling Programs
	Starting TotalView
	Loading Executables
	More on Loading Remote Executables
	Reloading a Recompiled Executable

	Attaching to Processes
	Attaching Using the Unattached Page
	Attaching Using File > New Program

	Detaching from Processes
	Examining a Core File
	Processes and Thread State
	Attached Process States
	Unattached Process States

	Handling Signals
	Setting Search Paths
	Setting Command Arguments
	Setting Input and Output Files
	Setting Preferences
	Setting Preferences, Options, and X Resources

	Setting Environment Variables
	Monitoring TotalView Sessions

	Setting Up Remote Debugging Sessions
	Starting the TotalView Debugger Server
	Single Process Server Launch Options
	Bulk Launch Window Options
	Starting the Debugger Server Manually
	Single Process Server Launch Command
	Bulk Server Launch on an SGI MIPs Machine
	Bulk Server Launch on an IBM RS/6000 AIX Machine
	Disabling Autolaunch
	Changing the Remote Shell Command
	Changing the Arguments
	Autolaunch Sequence

	Debugging Over a Serial Line
	Start the TotalView Debugger Server
	Starting TotalView on a Serial Line
	New Program Window

	Setting Up Parallel Debugging Sessions
	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	MPICH P4 procgroup Files

	Debugging Compaq MPI Applications
	Starting TotalView on a Compaq MPI Job
	Attaching to a Compaq MPI Job

	Debugging HP MPI Applications
	Starting TotalView on an HP MPI Job
	Attaching to an HP MPI Job

	Debugging IBM MPI (PE) Applications
	Preparing to Debug a PE Application
	Starting TotalView on a PE Job
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job
	Attaching from a Node Running poe
	Attaching from a Node Not Running poe

	Debugging QSW RMS Applications
	Starting TotalView on an RMS Job
	Attaching to an RMS Job

	Debugging SGI MPI Applications
	Starting TotalView on a SGI MPI Job
	Attaching to an SGI MPI Job

	Displaying the Message Queue Graph
	Displaying the Message Queue
	Message Queue Display Overview
	Message Operations
	MPI Process Diving
	MPI Buffer Diving
	Pending Receive Operations
	Unexpected Messages
	Pending Send Operations

	MPI Debugging Troubleshooting

	Debugging OpenMP Applications
	Debugging an OpenMP Program
	OpenMP Private and Shared Variables
	OpenMP THREADPRIVATE Common Blocks
	OpenMP Stack Parent Token Line

	Debugging PVM and DPVM Applications
	Supporting Multiple Sessions
	Setting Up ORNL PVM Debugging
	Starting an ORNL PVM Session
	Starting a DPVM Session
	Automatically Acquiring PVM/DPVM Processes
	Attaching to PVM/DPVM Tasks

	Shared Memory Code
	Debugging Portland Group, Inc., HPF Applications
	Starting TotalView with HPF
	Dynamically Loaded Library

	Setting Up PGI HPF Compiler Defaults
	Setting Up MPICH
	Setting TotalView Defaults for HPF
	Compiling HPF for Debugging
	Starting HPF Programs

	Parallel Debugging Tips
	Attaching to Processes
	General Parallel Debugging Tips
	MPICH Debugging Tips
	IBM PE Debugging Tips

	Debugging Programs
	Displaying Your Program’s Call Tree
	Finding the Source Code for Functions
	Resolving Ambiguous Names

	Finding the Source Code for Files
	Examining Source and Assembler Code
	Resetting the Current Stack Frame
	Editing Source Text
	Using the Toolbar to Select a Target
	Stopping Processes and Threads
	Updating Process Information
	Holding and Releasing Processes and Threads
	Examining Groups
	Displaying Groups
	Placing Processes into Groups

	Starting Processes and Threads
	Creating a Process Without Starting It
	Creating a Process by Single-Stepping

	Stepping
	Process-Width Stepping
	Group-Width Stepping
	Thread-Width Stepping
	Selecting Source Lines

	Using Single-Step Commands
	Stepping into Function Calls
	Stepping Over Function Calls

	Executing to a Selected Line
	Executing to the Completion of a Function

	Displaying Thread and Process Locations
	Continuing with a Specific Signal
	Setting the Program Counter
	Deleting Programs
	Restarting Programs
	Checkpointing Programs and Processes
	Interpreting Status and Control Registers

	Examining and Changing Data
	Displaying Variable Windows
	Displaying Local Variables and Registers
	Displaying a Global Variable
	Displaying All Global Variables
	Displaying Long Variable Names
	Displaying Areas of Memory
	Displaying Machine Instructions
	Closing Variable Windows

	Diving in Variable Windows
	Changing the Values of Variables
	Changing the Data Type of Variables
	How TotalView Displays C Data Types
	Pointers to Arrays
	Arrays
	Typedefs
	Structures
	Unions
	Built-In Types
	Character arrays (<string> Data Type)
	Areas of memory (<void> Data Type)
	Instructions (<code> Data Type)

	Type Casting Examples

	Working with Opaque Data
	Changing the Address of Variables
	Changing Types to Display Machine Instructions
	Displaying C++ Types
	Classes
	Changing Class Types in C++

	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Displaying Fortran Module Data
	Debugging Fortran 90 Modules
	Fortran 90 User-Defined Type
	Fortran 90 Deferred Shape Array Type
	Fortran 90 Pointer Type
	Displaying Fortran PARAMETERS

	Displaying Thread Objects

	Examining Arrays
	Examining and Analyzing Arrays
	Displaying Array Slices
	Slice Definitions
	Using Slices in the Variable Command

	Array Data Filtering
	Filtering by Comparison
	Filtering for IEEE Values
	Filtering by Range of Values
	Array Filter Expressions
	Filter Comparisons
	Filtering Array Data

	Sorting Array Data
	Array Statistics

	Displaying a Variable in All Processes or Threads
	Diving in a Laminated Pane
	Editing a Laminated Variable

	Visualizing Array Data
	Visualizing a Laminated Variable Window

	Setting Action Points
	Action Points Overview
	Setting Breakpoints and Barriers
	Setting Source-Level Breakpoints
	Selecting Ambiguous Source Lines

	Toggling Breakpoints at Locations
	Ambiguous Locations

	Displaying and Controlling Action Points
	Setting Machine-Level Breakpoints
	Breakpoints for Multiple Processes
	Breakpoint When Using fork()/execve()
	Example: Multiprocess Breakpoint

	Barrier Breakpoints
	Barrier Breakpoint States
	Setting a Barrier Breakpoint
	Releasing Processes from Barrier Points
	Deleting a Barrier Point
	Changes When Setting and Clearing a Barrier Point

	Defining Evaluation Points
	Setting Evaluation Points
	Creating Conditional Breakpoint Examples
	Patching Programs
	Conditionally Patching Out Code

	Interpreted vs. Compiled Expressions
	Interpreted Expressions
	Compiled Expressions

	Allocating Patch Space for Compiled Expressions
	Dynamic Patch Space Allocation
	Static Patch Space Allocation

	Using Watchpoints
	Architectures
	Creating Watchpoints
	Displaying Watchpoints

	Watching Memory
	Triggering Watchpoints
	Using Multiple Watchpoints
	Data Copies

	Conditional Watchpoints

	Saving Action Points to a File
	Evaluating Expressions
	Writing Code Fragments
	Intrinsic Variables
	Built-In Statements
	C Constructs Supported
	Data Types and Declarations
	Statements

	Fortran Constructs Supported
	Data Types and Declarations
	Statements

	Writing Assembler Code

	Visualizing Data
	How the Visualizer Works
	Configuring TotalView to Launch the Visualizer
	Data Types That TotalView Can Visualize
	Visualizing Data from the Variable Window
	Visualizing Data in Expressions
	Visualizer Animation

	Using the TotalView Visualizer
	Directory Window
	Data Windows

	Viewing of Data
	Graph Window
	Displaying Graphs
	Manipulating Graphs

	Surface Window�
	Displaying Surface Data
	Manipulating Surface Data

	Launching the Visualizer from the Command Line

	Troubleshooting
	The Problems

	X Resources
	TotalView X Resources
	Visualizer X Resources

	TotalView Command Syntax
	Options

	TotalView Debugger Server (tvdsvr) Command Syntax
	Replacement Characters

	Compilers and Platforms
	Compaq Tru64 UNIX
	HP-UX
	IBM AIX on RS/6000 Systems
	SGI IRIX-MIPS Systems
	SunOS 5 on SPARC
	Using Exception Data on Compaq Tru64 UNIX
	Linking with the dbfork Library
	Compaq Tru64 UNIX
	HP-UX
	IBM AIX on RS/6000 Systems
	Linking C++ Programs with dbfork

	SGI IRIX6-MIPS
	SunOS 5 SPARC

	Operating Systems
	Supported Operating Systems
	Mounting the /proc File System
	Compaq Tru64 UNIX and SunOS 5
	SGI IRIX

	Swap Space
	Compaq Tru64 UNIX
	HP HP-UX
	Maximum Data Size

	IBM AIX
	Linux
	SGI IRIX
	SunOS 5

	Shared Libraries
	Changing Linkage Table Entries and LD_BIND_NOW
	Using Shared Libraries on HP-UX

	Debugging Dynamically Loaded Libraries
	Known Limitations

	Remapping Keys
	Expression System
	Compaq Alpha Tru64 UNIX
	IBM AIX
	SGI IRIX

	Architectures
	Compaq Alpha
	Alpha General Registers
	Alpha Floating-Point Registers
	Alpha FPCR Register

	HP PA-RISC
	PA-RISC General Registers
	PA-RISC Process Status Word
	PA-RISC Floating-Point Registers
	PA-RISC Floating-Point Format

	IBM Power
	Power General Registers
	Power MSR Register
	Power Floating-Point Registers
	Power FPSCR Register
	Using the Power FPSCR Register

	Intel-x86
	Intel-x86 General Registers
	Intel-x86 Floating-Point Registers
	Intel-x86 FPCR Register
	Using the Intel-x86 FPCR Register

	Intel-x86 FPSR Register

	SGI MIPS
	MIPS General Registers
	MIPS SR Register
	MIPS Floating-Point Registers
	MIPS FCSR Register
	Using the MIPS FCSR Register

	MIPS Delay Slot Instructions

	Sun SPARC
	SPARC General Registers
	SPARC PSR Register
	SPARC Floating-Point Registers
	SPARC FPSR Register
	Using the SPARC FPSR Register

	Glossary
	Citations

